Single facility collection depots location problem in the plane

Computational Geometry - Tập 42 - Trang 403-418 - 2009
Robert Benkoczi1, Binay K. Bhattacharya2, Sandip Das3, Jeff Sember4
1Department of Mathematics & Computer Science, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
2School of Computing Science, Simon Fraser University, Burnaby, B.C. Canada V5A 1S6
3Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Calcutta, India-700 035
4UBC Computer Science, Vancouver, B.C., Canada, V6T 1Z4

Tài liệu tham khảo

Agarwal, 1990, Selecting distances in the plane, 321 Agarwal, 2004, Approximating extent measures of points, J. ACM, 51, 606, 10.1145/1008731.1008736 Agarwal, 2005, Geometric approximation via coresets, Combin. Comput. Geom., 52, 1 Bajaj, 1988, The algebraic degree of geometric optimization problems, Discrete Comput. Geom., 3, 177, 10.1007/BF02187906 Benkoczi, 2009, Collection depots facility location problems in trees, Networks, 53, 50, 10.1002/net.20258 Berman, 2002, The collection depots location problem on networks, Naval Research Logistics, 49, 15, 10.1002/nav.10000 Berman, 2004, Minisum collection depots location problem with multiple facilities on a network, J. Oper. Res. Soc., 55, 769, 10.1057/palgrave.jors.2601742 Bose, 2003, Fast approximations for sums of distances, clustering and the Fermat–Weber problem, Comput. Geom. Theory Appl., 24, 135, 10.1016/S0925-7721(02)00102-5 Chandrasekaran, 1990, Algebraic optimization: the Fermat–Weber location problem, Math. Program., 46, 219, 10.1007/BF01585739 Cormen, 2001 Drezner, 2001, On the collection depots location problem, European J. Oper. Res., 130, 510, 10.1016/S0377-2217(99)00410-5 Edelsbrunner, 1988, Arrangements of curves in the plane – topology, combinatorics, and algorithms, 214 Feldman, 2007, A ptas for k-means clustering based on weak coresets, 11 Fortune, 1987, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2, 153, 10.1007/BF01840357 Guibas, 1988, Ruler, compass and computer: the design and analysis of geometric algorithms, vol. 40, 111 Har-Peled, 2005, Smaller coresets for k-median and k-means clustering, 126 Har-Peled, 2004, On coresets for k-means and k-median clustering, 291 M.I. Karavelas, M. Yvinec, Dynamic additively weighted Voronoi diagrams in 2D, in: ESA: Annual European Symposium on Algorithms, 2002 Klamroth, 2001, Planar weber location problems with line barriers, Optimization, 49, 517, 10.1080/02331930108844547 Megiddo, 1983, Applying parallel computation algorithms in the design of serial algorithms, J. ACM, 30, 852, 10.1145/2157.322410 O'Rourke, 1998 F. Plastria, How bad can the centroid be? in: European Conference on Operational Research, 2007 Sharir, 1995 A. Tamir, N. Halman, Private communication, 2005 Tamir, 2005, One-way and round-trip center location problems, Discrete Optim., 2, 168, 10.1016/j.disopt.2004.12.004 Weiszfeld, 1936, Sur le point pour lequel la somme des distances de n points donnes est minimum, Tohoku Math. J., 43, 355 Wesolowsky, 1993, The Weber problem: History and perspective, Location Sci., 1, 5