Single facility collection depots location problem in the plane
Tài liệu tham khảo
Agarwal, 1990, Selecting distances in the plane, 321
Agarwal, 2004, Approximating extent measures of points, J. ACM, 51, 606, 10.1145/1008731.1008736
Agarwal, 2005, Geometric approximation via coresets, Combin. Comput. Geom., 52, 1
Bajaj, 1988, The algebraic degree of geometric optimization problems, Discrete Comput. Geom., 3, 177, 10.1007/BF02187906
Benkoczi, 2009, Collection depots facility location problems in trees, Networks, 53, 50, 10.1002/net.20258
Berman, 2002, The collection depots location problem on networks, Naval Research Logistics, 49, 15, 10.1002/nav.10000
Berman, 2004, Minisum collection depots location problem with multiple facilities on a network, J. Oper. Res. Soc., 55, 769, 10.1057/palgrave.jors.2601742
Bose, 2003, Fast approximations for sums of distances, clustering and the Fermat–Weber problem, Comput. Geom. Theory Appl., 24, 135, 10.1016/S0925-7721(02)00102-5
Chandrasekaran, 1990, Algebraic optimization: the Fermat–Weber location problem, Math. Program., 46, 219, 10.1007/BF01585739
Cormen, 2001
Drezner, 2001, On the collection depots location problem, European J. Oper. Res., 130, 510, 10.1016/S0377-2217(99)00410-5
Edelsbrunner, 1988, Arrangements of curves in the plane – topology, combinatorics, and algorithms, 214
Feldman, 2007, A ptas for k-means clustering based on weak coresets, 11
Fortune, 1987, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2, 153, 10.1007/BF01840357
Guibas, 1988, Ruler, compass and computer: the design and analysis of geometric algorithms, vol. 40, 111
Har-Peled, 2005, Smaller coresets for k-median and k-means clustering, 126
Har-Peled, 2004, On coresets for k-means and k-median clustering, 291
M.I. Karavelas, M. Yvinec, Dynamic additively weighted Voronoi diagrams in 2D, in: ESA: Annual European Symposium on Algorithms, 2002
Klamroth, 2001, Planar weber location problems with line barriers, Optimization, 49, 517, 10.1080/02331930108844547
Megiddo, 1983, Applying parallel computation algorithms in the design of serial algorithms, J. ACM, 30, 852, 10.1145/2157.322410
O'Rourke, 1998
F. Plastria, How bad can the centroid be? in: European Conference on Operational Research, 2007
Sharir, 1995
A. Tamir, N. Halman, Private communication, 2005
Tamir, 2005, One-way and round-trip center location problems, Discrete Optim., 2, 168, 10.1016/j.disopt.2004.12.004
Weiszfeld, 1936, Sur le point pour lequel la somme des distances de n points donnes est minimum, Tohoku Math. J., 43, 355
Wesolowsky, 1993, The Weber problem: History and perspective, Location Sci., 1, 5