Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans
Tài liệu tham khảo
Adriany, 2001, A half-volume transmit/receive coil combination for 7 Tesla applications, 1097
Bandettini, 1993, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med., 30, 161, 10.1002/mrm.1910300204
Bandettini, 1994, Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T, NMR Biomed., 7, 12, 10.1002/nbm.1940070104
Boxerman, 1995, The intravascular contribution to fMRI signal changes: Monte Carlo modeling and diffusion-weighted studies in vivo, Magn. Reson. Med., 34, 4, 10.1002/mrm.1910340103
Boxerman, 1995, MR contrast due to intravascular magnetic susceptibility perturbations, Magn. Reson. Med., 34, 555, 10.1002/mrm.1910340412
Cannestra, 2001, Temporal spatial differences observed by functional MRI and human intraoperative optical imaging, Cereb. Cortex, 11, 773, 10.1093/cercor/11.8.773
Cheng, 2001, Predicting BOLD signal changes as a function of blood volume fraction and resolution, NMR Biomed., 14, 468, 10.1002/nbm.727
Cheng, 2001, Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging, Neuron, 32, 359, 10.1016/S0896-6273(01)00477-9
Dechent, 2000, Direct mapping of ocular dominance columns in human primary visual cortex, NeuroReport, 11, 3247, 10.1097/00001756-200009280-00039
Duong, 2000, Spatio-temporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response, Magn. Reson. Med., 44, 231, 10.1002/1522-2594(200008)44:2<231::AID-MRM10>3.0.CO;2-T
Duong, 2001, Diffusion-weighted BOLD fMRI at 4 and 7 Tesla: evaluation of micro-versus macrovascular contributions, 1253
Duong, 2002, High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T, Magn. Reson. Med., 48, 589, 10.1002/mrm.10252
Duong, 2003, Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects, Magn. Reson. Med., 49, 1019, 10.1002/mrm.10472
Duong, 2004, Spatial specificity of high-resolution, spin-echo BOLD, and CBF fMRI at 7 T, Magn. Reson. Med., 51, 646, 10.1002/mrm.20039
Duyn, 1994, Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5T, NMR Biomed., 7, 83, 10.1002/nbm.1940070113
Engel, 1997, Retinotopic organization in human visual cortex and the spatial precision of functional MRI, Cereb. Cortex, 7, 181, 10.1093/cercor/7.2.181
Frahm, 1993, Functional MRI of human brain activation at high spatial resolution, Magn. Reson. Med., 29, 139, 10.1002/mrm.1910290126
Frahm, 1994, Brain or vein-oxygenation or flow? On signal physiology in functional MRI of human brain activation, NMR Biomed., 7, 45, 10.1002/nbm.1940070108
Fransson, 2002, On the effects of spatial filtering—a comparative fMRI study of episodic memory encoding at high and low resolution, NeuroImage, 16, 977, 10.1006/nimg.2002.1079
Friston, 1994, Analysis of functional MRI time series, Hum. Brain Mapp., 1, 153, 10.1002/hbm.460010207
Fujita, 2001, Extravascular contribution of blood oxygenation level dependent signal changes: a numerical analysis based on a vascular network model, Magn. Reson. Med., 46, 723, 10.1002/mrm.1251
Goodyear, 2001, Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI, Hum. Brain Mapp., 14, 210, 10.1002/hbm.1053
Gruetter, 2000, Field mapping without reference scan using asymmetric echo-planar techniques, Magn. Reson. Med., 43, 319, 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1
Haacke, 1994, 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies, NMR Biomed., 7, 54, 10.1002/nbm.1940070109
Haacke, 1999
Hu, 1994, Reduction of physiological noise in functional MRI using navigator echo, Magn. Reson. Med., 31, 495, 10.1002/mrm.1910310505
Hu, 1997, Evaluation of the early response in fMRI in individual subjects using short stimulus duration, Magn. Reson. Med., 37, 877, 10.1002/mrm.1910370612
Hyde, 1994, Physiological and instrumental fluctuations in fMRI data, 73
Hyde, 2001, High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels, Magn. Reson. Med., 46, 114, 10.1002/mrm.1166
Jesmanowicz, 1998, Single-shot half k-space high-resolution gradient-recalled EPI for fMRI at 3 Tesla, Magn. Reson. Med., 40, 754, 10.1002/mrm.1910400517
Kim, 1994, Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques, NMR Biomed., 7, 69, 10.1002/nbm.1940070111
Kim, 2000, High-resolution mapping of iso-orientation columns by fMRI, Nat. Neurosci., 3, 164, 10.1038/72109
Kim, 2004, Spatial relationship between neuronal activity and BOLD functional MRI, NeuroImage, 21, 876, 10.1016/j.neuroimage.2003.10.018
Krueger, 2001, Physiological noise in oxygenation-sensitive magnetic resonance imaging, Magn. Reson. Med., 46, 631, 10.1002/mrm.1240
Kruger, 2001, Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging, Magn. Reson. Med., 45, 595, 10.1002/mrm.1081
Kwong, 1992, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. U. S. A., 89, 5675, 10.1073/pnas.89.12.5675
Lai, 1993, Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: Preliminary results, Magn. Reson. Med., 30, 387, 10.1002/mrm.1910300318
Lee, 1995, Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging, Magn. Reson. Med., 33, 745, 10.1002/mrm.1910330602
Lu, 2003, Functional magnetic resonance imaging based on changes in vascular space occupancy, Magn. Reson. Med., 50, 263, 10.1002/mrm.10519
Luh, 2003, Echo Relaxation Imaging (ERI) demonstrates that activation induced spin-echo changes are not due to changes in T2, 124
Menon, 2002, Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI, Magn. Reson. Med., 47, 1, 10.1002/mrm.10041
Menon, 1993, 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex, Magn. Reson. Med., 30, 380, 10.1002/mrm.1910300317
Menon, 1995, BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: Echo-planar imaging mirrors previous optical imaging using intrinsic signals, Magn. Reson. Med., 33, 453, 10.1002/mrm.1910330323
Menon, 1997, Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging, J. Neurophysiol., 77, 2780, 10.1152/jn.1997.77.5.2780
Norris, 2002, An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T, NeuroImage, 15, 719, 10.1006/nimg.2001.1005
Ogawa, 1990, Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation, Magn. Reson. Med., 16, 9, 10.1002/mrm.1910160103
Ogawa, 1990, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci., 87, 9868, 10.1073/pnas.87.24.9868
Ogawa, 1990, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields, Magn. Reson. Med., 14, 68, 10.1002/mrm.1910140108
Ogawa, 1992, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci., 89, 5951, 10.1073/pnas.89.13.5951
Ogawa, 1993, Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging, Biophys. J., 64, 800, 10.1016/S0006-3495(93)81441-3
Oja, 1999, Venous blood effects in spin-echo fMRI of human brain, Magn. Reson. Med., 42, 617, 10.1002/(SICI)1522-2594(199910)42:4<617::AID-MRM1>3.0.CO;2-Q
Olman, 2004, Point spread function for gradient echo and spin echo BOLD fMRI at 7 Tesla, 1066
Pawlik, 1981, Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study, Brain Res., 208, 35, 10.1016/0006-8993(81)90619-3
Pfeuffer, 2002, Correction of physiologically induced global off-resonance effects in dynamic echo planar and spiral functional imaging, Magn. Reson. Med., 47, 344, 10.1002/mrm.10065
Pfeuffer, 2002, Zoomed functional imaging in the human brain at 7 Tesla with simultaneously high spatial and temporal resolution, NeuroImage, 17, 272, 10.1006/nimg.2002.1103
Reichenbach, 2001, High-resolution BOLD venographic imaging: a window into brain function, NMR Biomed., 14, 453, 10.1002/nbm.722
Reichenbach, 1998, High-resolution venography of the brain using magnetic resonance imaging, Magma, 6, 62, 10.1007/BF02662513
Segebarth, 1994, Functional MRI of the human brain: predominance of signals from extracerebral veins, NeuroReport, 5, 813, 10.1097/00001756-199403000-00019
Silvennoinen, 2003, Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla, Magn. Reson. Med., 49, 47, 10.1002/mrm.10355
Song, 1996, Diffusion weighted fMRI at 1.5 T, Magn. Reson. Med., 35, 155, 10.1002/mrm.1910350204
Stroman, 2001, Spin-echo versus gradient-echo fMRI with short echo times, Magn. Reson. Imaging, 19, 827, 10.1016/S0730-725X(01)00392-7
Stroman, 2002, Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord, Magn. Reson. Med., 48, 122, 10.1002/mrm.10178
Strupp, 1996, Stimulate: a GUI based fMRI analysis software package, NeuroImage, 3, S607, 10.1016/S1053-8119(96)80609-4
Thulborn, 1982, Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field, Biochem. Biophys. Acta, 714, 265, 10.1016/0304-4165(82)90333-6
Thulborn, 1997, High-resolution echo-planar fMRI of human visual cortex at 3.0 Tesla, NMR Biomed., 10, 183, 10.1002/(SICI)1099-1492(199706/08)10:4/5<183::AID-NBM469>3.0.CO;2-W
Ugurbil, 1999, Imaging brain activity using nuclear spins
Ugurbil, 2000, Magnetic Resonance studies of brain function and neurochemistry, Annu. Rev. Biomed. Eng., 2, 633, 10.1146/annurev.bioeng.2.1.633
Ugurbil, 2003, Ultrahigh field magnetic resonance imaging and spectroscopy, Magn. Reson. Imaging, 21, 1263, 10.1016/j.mri.2003.08.027
Ugurbil, 2003, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci., 26, 108, 10.1016/S0166-2236(02)00039-5
Weisskoff, 1996, Simple measurement of scanner stability for functional NMR imaging of activation in the brain, Magn. Reson. Med., 36, 643, 10.1002/mrm.1910360422
Yacoub, 1999, Further evaluation of the initial negative response in functional magnetic resonance imaging, Magn. Reson. Med., 41, 436, 10.1002/(SICI)1522-2594(199903)41:3<436::AID-MRM2>3.0.CO;2-#
Yacoub, 2001, Imaging brain function in humans at 7 Tesla, Magn. Reson. Med., 45, 588, 10.1002/mrm.1080
Yacoub, 2003, Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields, Magn. Reson. Med., 49, 655, 10.1002/mrm.10433