Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans

NeuroImage - Tập 24 - Trang 738-750 - 2005
Essa Yacoub1, Pierre-Francois Van De Moortele1, Amir Shmuel1, Kâmil Uğurbil1
1Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA

Tài liệu tham khảo

Adriany, 2001, A half-volume transmit/receive coil combination for 7 Tesla applications, 1097 Bandettini, 1993, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med., 30, 161, 10.1002/mrm.1910300204 Bandettini, 1994, Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T, NMR Biomed., 7, 12, 10.1002/nbm.1940070104 Boxerman, 1995, The intravascular contribution to fMRI signal changes: Monte Carlo modeling and diffusion-weighted studies in vivo, Magn. Reson. Med., 34, 4, 10.1002/mrm.1910340103 Boxerman, 1995, MR contrast due to intravascular magnetic susceptibility perturbations, Magn. Reson. Med., 34, 555, 10.1002/mrm.1910340412 Cannestra, 2001, Temporal spatial differences observed by functional MRI and human intraoperative optical imaging, Cereb. Cortex, 11, 773, 10.1093/cercor/11.8.773 Cheng, 2001, Predicting BOLD signal changes as a function of blood volume fraction and resolution, NMR Biomed., 14, 468, 10.1002/nbm.727 Cheng, 2001, Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging, Neuron, 32, 359, 10.1016/S0896-6273(01)00477-9 Dechent, 2000, Direct mapping of ocular dominance columns in human primary visual cortex, NeuroReport, 11, 3247, 10.1097/00001756-200009280-00039 Duong, 2000, Spatio-temporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response, Magn. Reson. Med., 44, 231, 10.1002/1522-2594(200008)44:2<231::AID-MRM10>3.0.CO;2-T Duong, 2001, Diffusion-weighted BOLD fMRI at 4 and 7 Tesla: evaluation of micro-versus macrovascular contributions, 1253 Duong, 2002, High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T, Magn. Reson. Med., 48, 589, 10.1002/mrm.10252 Duong, 2003, Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects, Magn. Reson. Med., 49, 1019, 10.1002/mrm.10472 Duong, 2004, Spatial specificity of high-resolution, spin-echo BOLD, and CBF fMRI at 7 T, Magn. Reson. Med., 51, 646, 10.1002/mrm.20039 Duyn, 1994, Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5T, NMR Biomed., 7, 83, 10.1002/nbm.1940070113 Engel, 1997, Retinotopic organization in human visual cortex and the spatial precision of functional MRI, Cereb. Cortex, 7, 181, 10.1093/cercor/7.2.181 Frahm, 1993, Functional MRI of human brain activation at high spatial resolution, Magn. Reson. Med., 29, 139, 10.1002/mrm.1910290126 Frahm, 1994, Brain or vein-oxygenation or flow? On signal physiology in functional MRI of human brain activation, NMR Biomed., 7, 45, 10.1002/nbm.1940070108 Fransson, 2002, On the effects of spatial filtering—a comparative fMRI study of episodic memory encoding at high and low resolution, NeuroImage, 16, 977, 10.1006/nimg.2002.1079 Friston, 1994, Analysis of functional MRI time series, Hum. Brain Mapp., 1, 153, 10.1002/hbm.460010207 Fujita, 2001, Extravascular contribution of blood oxygenation level dependent signal changes: a numerical analysis based on a vascular network model, Magn. Reson. Med., 46, 723, 10.1002/mrm.1251 Goodyear, 2001, Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI, Hum. Brain Mapp., 14, 210, 10.1002/hbm.1053 Gruetter, 2000, Field mapping without reference scan using asymmetric echo-planar techniques, Magn. Reson. Med., 43, 319, 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 Haacke, 1994, 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies, NMR Biomed., 7, 54, 10.1002/nbm.1940070109 Haacke, 1999 Hu, 1994, Reduction of physiological noise in functional MRI using navigator echo, Magn. Reson. Med., 31, 495, 10.1002/mrm.1910310505 Hu, 1997, Evaluation of the early response in fMRI in individual subjects using short stimulus duration, Magn. Reson. Med., 37, 877, 10.1002/mrm.1910370612 Hyde, 1994, Physiological and instrumental fluctuations in fMRI data, 73 Hyde, 2001, High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels, Magn. Reson. Med., 46, 114, 10.1002/mrm.1166 Jesmanowicz, 1998, Single-shot half k-space high-resolution gradient-recalled EPI for fMRI at 3 Tesla, Magn. Reson. Med., 40, 754, 10.1002/mrm.1910400517 Kim, 1994, Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques, NMR Biomed., 7, 69, 10.1002/nbm.1940070111 Kim, 2000, High-resolution mapping of iso-orientation columns by fMRI, Nat. Neurosci., 3, 164, 10.1038/72109 Kim, 2004, Spatial relationship between neuronal activity and BOLD functional MRI, NeuroImage, 21, 876, 10.1016/j.neuroimage.2003.10.018 Krueger, 2001, Physiological noise in oxygenation-sensitive magnetic resonance imaging, Magn. Reson. Med., 46, 631, 10.1002/mrm.1240 Kruger, 2001, Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging, Magn. Reson. Med., 45, 595, 10.1002/mrm.1081 Kwong, 1992, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. U. S. A., 89, 5675, 10.1073/pnas.89.12.5675 Lai, 1993, Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: Preliminary results, Magn. Reson. Med., 30, 387, 10.1002/mrm.1910300318 Lee, 1995, Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging, Magn. Reson. Med., 33, 745, 10.1002/mrm.1910330602 Lu, 2003, Functional magnetic resonance imaging based on changes in vascular space occupancy, Magn. Reson. Med., 50, 263, 10.1002/mrm.10519 Luh, 2003, Echo Relaxation Imaging (ERI) demonstrates that activation induced spin-echo changes are not due to changes in T2, 124 Menon, 2002, Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI, Magn. Reson. Med., 47, 1, 10.1002/mrm.10041 Menon, 1993, 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex, Magn. Reson. Med., 30, 380, 10.1002/mrm.1910300317 Menon, 1995, BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: Echo-planar imaging mirrors previous optical imaging using intrinsic signals, Magn. Reson. Med., 33, 453, 10.1002/mrm.1910330323 Menon, 1997, Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging, J. Neurophysiol., 77, 2780, 10.1152/jn.1997.77.5.2780 Norris, 2002, An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T, NeuroImage, 15, 719, 10.1006/nimg.2001.1005 Ogawa, 1990, Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation, Magn. Reson. Med., 16, 9, 10.1002/mrm.1910160103 Ogawa, 1990, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci., 87, 9868, 10.1073/pnas.87.24.9868 Ogawa, 1990, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields, Magn. Reson. Med., 14, 68, 10.1002/mrm.1910140108 Ogawa, 1992, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci., 89, 5951, 10.1073/pnas.89.13.5951 Ogawa, 1993, Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging, Biophys. J., 64, 800, 10.1016/S0006-3495(93)81441-3 Oja, 1999, Venous blood effects in spin-echo fMRI of human brain, Magn. Reson. Med., 42, 617, 10.1002/(SICI)1522-2594(199910)42:4<617::AID-MRM1>3.0.CO;2-Q Olman, 2004, Point spread function for gradient echo and spin echo BOLD fMRI at 7 Tesla, 1066 Pawlik, 1981, Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study, Brain Res., 208, 35, 10.1016/0006-8993(81)90619-3 Pfeuffer, 2002, Correction of physiologically induced global off-resonance effects in dynamic echo planar and spiral functional imaging, Magn. Reson. Med., 47, 344, 10.1002/mrm.10065 Pfeuffer, 2002, Zoomed functional imaging in the human brain at 7 Tesla with simultaneously high spatial and temporal resolution, NeuroImage, 17, 272, 10.1006/nimg.2002.1103 Reichenbach, 2001, High-resolution BOLD venographic imaging: a window into brain function, NMR Biomed., 14, 453, 10.1002/nbm.722 Reichenbach, 1998, High-resolution venography of the brain using magnetic resonance imaging, Magma, 6, 62, 10.1007/BF02662513 Segebarth, 1994, Functional MRI of the human brain: predominance of signals from extracerebral veins, NeuroReport, 5, 813, 10.1097/00001756-199403000-00019 Silvennoinen, 2003, Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla, Magn. Reson. Med., 49, 47, 10.1002/mrm.10355 Song, 1996, Diffusion weighted fMRI at 1.5 T, Magn. Reson. Med., 35, 155, 10.1002/mrm.1910350204 Stroman, 2001, Spin-echo versus gradient-echo fMRI with short echo times, Magn. Reson. Imaging, 19, 827, 10.1016/S0730-725X(01)00392-7 Stroman, 2002, Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord, Magn. Reson. Med., 48, 122, 10.1002/mrm.10178 Strupp, 1996, Stimulate: a GUI based fMRI analysis software package, NeuroImage, 3, S607, 10.1016/S1053-8119(96)80609-4 Thulborn, 1982, Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field, Biochem. Biophys. Acta, 714, 265, 10.1016/0304-4165(82)90333-6 Thulborn, 1997, High-resolution echo-planar fMRI of human visual cortex at 3.0 Tesla, NMR Biomed., 10, 183, 10.1002/(SICI)1099-1492(199706/08)10:4/5<183::AID-NBM469>3.0.CO;2-W Ugurbil, 1999, Imaging brain activity using nuclear spins Ugurbil, 2000, Magnetic Resonance studies of brain function and neurochemistry, Annu. Rev. Biomed. Eng., 2, 633, 10.1146/annurev.bioeng.2.1.633 Ugurbil, 2003, Ultrahigh field magnetic resonance imaging and spectroscopy, Magn. Reson. Imaging, 21, 1263, 10.1016/j.mri.2003.08.027 Ugurbil, 2003, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci., 26, 108, 10.1016/S0166-2236(02)00039-5 Weisskoff, 1996, Simple measurement of scanner stability for functional NMR imaging of activation in the brain, Magn. Reson. Med., 36, 643, 10.1002/mrm.1910360422 Yacoub, 1999, Further evaluation of the initial negative response in functional magnetic resonance imaging, Magn. Reson. Med., 41, 436, 10.1002/(SICI)1522-2594(199903)41:3<436::AID-MRM2>3.0.CO;2-# Yacoub, 2001, Imaging brain function in humans at 7 Tesla, Magn. Reson. Med., 45, 588, 10.1002/mrm.1080 Yacoub, 2003, Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields, Magn. Reson. Med., 49, 655, 10.1002/mrm.10433