Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes

CATENA - Tập 142 - Trang 269-280 - 2016
F. Neugirg1, A. Kaiser2, A. Huber1, T. Heckmann1, M. Schindewolf2, J. Schmidt2, M. Becht1, F. Haas1
1Dept. of Physical Geography, Catholic University of Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany
2Soil and Water Conservation Unit, Technical University Bergakademie Freiberg, D-09599 Freiberg, Germany

Tài liệu tham khảo

Bayerisches Geologisches Landesamt, 1991: Geologische Karte von Bayern 1:25000, 8335 Lenggries. Bayerisches Landesvermessungsamt, München. Becht, 1986 Becht, 1995 Becht, 1992, The Lainbach catchment/Benediktbeuern (Upper Bavaria): its physical landscape and development, 15 Bennett, 2012, Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben, Earth Surf. Process. Landf., 37, 1627, 10.1002/esp.3263 Blasone, 2014, Monitoring sediment source areas in a debris flow catchment using terrestrial laser scanning, Catena, 123, 23, 10.1016/j.catena.2014.07.001 Brasington, 2000, Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey, Earth Surf. Process. Landf., 25, 973, 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y Brasington, 2003, Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport, Geomorphology, 53, 299, 10.1016/S0169-555X(02)00320-3 Clarke, 2006, Process-form relationships in Southern Italian badlands: erosion rates and implications for landform evolution, Earth Surf. Process. Landf., 31, 15, 10.1002/esp.1226 Day, 2013, Measuring bluff erosion part 1: terrestrial laser scanning methods for change detection, Earth Surf. Process. Landf., 38, 1055, 10.1002/esp.3353 De Jong, 1992, A catastrophic flood/multiple debris flow in a confined mountain stream: an example from the Schmiedlaine, southern Germany, 237 Della Seta, 2009, Space–time variability of denudation rates at the catchment and hillslope scales on the Tyrrhenian side of Central Italy, Geomorphology, 107, 161, 10.1016/j.geomorph.2008.12.004 Evans, 2005, Sediment budget for an eroding peat–moorland catchment in northern England, Earth Surf. Process. Landf., 30, 557, 10.1002/esp.1153 Felix, 1988, Die Niederschlagsverhältnisse, Vol. 6, 34 Haas, 2008 Haas, 2011, Ground-based laserscanning ― a new method for measuring fluvial erosion on steep slopes, 163 Haas, 2011, Quantification and modeling of fluvial bedload discharge from hillslope channels in two alpine catchments (Bavarian Alps, Germany), Z. Geomorphol. N.F. Suppl., 55, 147, 10.1127/0372-8854/2011/0055S3-0056 Haas, 2012, Quantification and modelling of debris flows in the proglacial area of the Gepatschferner, Austria, using ground-based LiDAR, 293 Haas, 2012, Runout analysis of a large rockfall in the Dolomites/Italian Alps using LIDAR derived particle sizes and shapes, Earth Surf. Process. Landf., n/a Heritage, 2009, Terrestrial laser scanning of grain roughness in a gravel-bed river. Understanding earth surface processes from remotely sensed digital terrain models, 113, 4 Kaiser, 2014, Simulation of rainfall effects on sediment transport on steep slopes in an Alpine catchment, 43 Lane, 2003, Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing, Earth Surf. Process. Landf., 28, 249, 10.1002/esp.483 Milan, 2007, Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river, Earth Surf. Process. Landf., 32, 1657, 10.1002/esp.1592 Neugirg, 2014, Quantification, analysis and modelling of soil erosion on steep slopes using LiDAR and aerial photos, 367 O'Callaghan, 1984, The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Process., 28, 323, 10.1016/S0734-189X(84)80011-0 Passalacqua, 2015, Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review, Earth Sci. Rev., 148, 174, 10.1016/j.earscirev.2015.05.012 Priesmeier, 1988, Untersuchungsgebiet Lainbachtal, Vol. 6, 34 Rieg, 2014, Data infrastructure for multitemporal airborne LiDAR point cloud analysis — examples from physical geography in high mountain environments, Comput. Environ. Urban. Syst., 11 Schindewolf, 2016, Seasonal erosion patterns under alpine conditions: benefits and challenges of a novel approach in physically based soil erosion modeling, Z. Geomorphol. N.F. Suppl., 10.1127/zfg_suppl/2015/S-00185 Schürch, 2011, Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel, Earth Surf. Process. Landf., 36, 1847, 10.1002/esp.2206 Servida, 2009, Geochemical hazard evaluation of sulphide-rich iron mines: the Rio Marina district, J. Geochem. Explor., 100, 75, 10.1016/j.gexplo.2008.03.005 Tarolli, 2014, High-resolution topography for understanding Earth surface processes: opportunities and challenges, Geomorphology, 216, 295, 10.1016/j.geomorph.2014.03.008 Wetzel, 1992, Abtragsprozesse an Hängen und Feststoffführung der Gewässer Wheaton, 2010, Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets, Earth Surf. Process. Landf., 35, 136 Williams, 2014, Hyperscale terrain modelling of braided rivers: fusing mobile terrestrial laser scanning and optical bathymetric mapping, Earth Surf. Process. Landf., 39, 167, 10.1002/esp.3437 Zimmermann, 1997, Geschiebeeinträge aus den Wildbächen zwischen Sylvensteinspeicher und Bad Tölz