Rank adaptive tensor recovery based model reduction for partial differential equations with high-dimensional random inputs

Journal of Computational Physics - Tập 409 - Trang 109326 - 2020
Kejun Tang1,2,3, Qifeng Liao1
1School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3University of Chinese Academy of Sciences, Beijing, China

Tài liệu tham khảo

Ghanem, 2003 Xiu, 2002, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826 Xiu, 2005, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118, 10.1137/040615201 Xiu, 2010 Ma, 2009, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 3084, 10.1016/j.jcp.2009.01.006 Powell, 2009, Block-diagonal preconditioning for spectral stochastic finite-element systems, IMA J. Numer. Anal., 29, 350, 10.1093/imanum/drn014 Doostan, 2011, A non-adapted sparse approximation of pdes with stochastic inputs, J. Comput. Phys., 230, 3015, 10.1016/j.jcp.2011.01.002 Peng, 2014, A weighted l1-minimization approach for sparse polynomial chaos expansions, J. Comput. Phys., 267, 92, 10.1016/j.jcp.2014.02.024 Yan, 2012, Stochastic collocation algorithms using l1-minimization, Int. J. Uncertain. Quantificat., 3, 279, 10.1615/Int.J.UncertaintyQuantification.2012003925 Jakeman, 2017, A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions, SIAM J. Sci. Comput., 39, A1114, 10.1137/16M1063885 Lei, 2015, Constructing surrogate models of complex systems with enhanced sparsity: quantifying the influence of conformational uncertainty in biomolecular solvation, Multiscale Model. Simul., 13, 1327, 10.1137/140981587 Guo, 2018, A gradient enhanced l1-minimization for sparse approximation of polynomial chaos expansions, J. Comput. Phys., 367, 49, 10.1016/j.jcp.2018.04.026 Babuška, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005, 10.1137/050645142 Foo, 2008, The multi-element probabilistic collocation method (ME-PCM): error analysis and applications, J. Comput. Phys., 227, 9572, 10.1016/j.jcp.2008.07.009 Narayan, 2012, Stochastic collocation methods on unstructured grids in high dimensions via interpolation, SIAM J. Sci. Comput., 34, A1729, 10.1137/110854059 Narayan, 2014, A stochastic collocation algorithm with multifidelity models, SIAM J. Sci. Comput., 36, A495, 10.1137/130929461 Kolda, 2009, Tensor decompositions and applications, SIAM Rev., 51, 455, 10.1137/07070111X Zhang, 2017, Big-data tensor recovery for high-dimensional uncertainty quantification of process variations, IEEE Trans. Compon. Packag. Manuf. Technol., 7, 687, 10.1109/TCPMT.2016.2628703 Conti, 2010, Bayesian emulation of complex multi-output and dynamic computer models, J. Stat. Plan. Inference, 140, 640, 10.1016/j.jspi.2009.08.006 Xing, 2016, Manifold learning for the emulation of spatial fields from computational models, J. Comput. Phys., 326, 666, 10.1016/j.jcp.2016.07.040 Ma, 2011, Kernel principal component analysis for stochastic input model generation, J. Comput. Phys., 230, 7311, 10.1016/j.jcp.2011.05.037 Acar, 2010, Scalable tensor factorizations for incomplete data, Chemom. Intell. Lab. Syst., 106, 41, 10.1016/j.chemolab.2010.08.004 Gandy, 2011, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Probl., 27, 10.1088/0266-5611/27/2/025010 Liu, 2013, Tensor completion for estimating missing values in visual data, 2114 Vidal, 2016 Kwok, 2004, The pre-image problem in kernel methods, IEEE Trans. Neural Netw., 15, 1517, 10.1109/TNN.2004.837781 Schölkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467 Gautschi, 1982, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput., 3, 289, 10.1137/0903018 Buzzard, 2011, Variance-based global sensitivity analysis via sparse-grid interpolation and cubature, Commun. Comput. Phys., 9, 542, 10.4208/cicp.230909.160310s Lathauwer, 2000, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21, 1253, 10.1137/S0895479896305696 Boyd, 2011, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 10.1561/2200000016 Bertsekas, 1999 Arlot, 2010, A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40, 10.1214/09-SS054 Steinlechner, 2016, Riemannian optimization for high-dimensional tensor completion, SIAM J. Sci. Comput., 38, 461, 10.1137/15M1010506 Deng, 2016, On the global and linear convergence of the generalized alternating direction method of multipliers, J. Sci. Comput., 66, 889, 10.1007/s10915-015-0048-x DeGroot, 2012 Ryckaert, 1977, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23, 327, 10.1016/0021-9991(77)90098-5 Elman, 2014 Elman, 2014, IFISS: a computational laboratory for investigating incompressible flow problems, SIAM Rev., 56, 261, 10.1137/120891393