Rank adaptive tensor recovery based model reduction for partial differential equations with high-dimensional random inputs
Tài liệu tham khảo
Ghanem, 2003
Xiu, 2002, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826
Xiu, 2005, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118, 10.1137/040615201
Xiu, 2010
Ma, 2009, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 3084, 10.1016/j.jcp.2009.01.006
Powell, 2009, Block-diagonal preconditioning for spectral stochastic finite-element systems, IMA J. Numer. Anal., 29, 350, 10.1093/imanum/drn014
Doostan, 2011, A non-adapted sparse approximation of pdes with stochastic inputs, J. Comput. Phys., 230, 3015, 10.1016/j.jcp.2011.01.002
Peng, 2014, A weighted l1-minimization approach for sparse polynomial chaos expansions, J. Comput. Phys., 267, 92, 10.1016/j.jcp.2014.02.024
Yan, 2012, Stochastic collocation algorithms using l1-minimization, Int. J. Uncertain. Quantificat., 3, 279, 10.1615/Int.J.UncertaintyQuantification.2012003925
Jakeman, 2017, A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions, SIAM J. Sci. Comput., 39, A1114, 10.1137/16M1063885
Lei, 2015, Constructing surrogate models of complex systems with enhanced sparsity: quantifying the influence of conformational uncertainty in biomolecular solvation, Multiscale Model. Simul., 13, 1327, 10.1137/140981587
Guo, 2018, A gradient enhanced l1-minimization for sparse approximation of polynomial chaos expansions, J. Comput. Phys., 367, 49, 10.1016/j.jcp.2018.04.026
Babuška, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005, 10.1137/050645142
Foo, 2008, The multi-element probabilistic collocation method (ME-PCM): error analysis and applications, J. Comput. Phys., 227, 9572, 10.1016/j.jcp.2008.07.009
Narayan, 2012, Stochastic collocation methods on unstructured grids in high dimensions via interpolation, SIAM J. Sci. Comput., 34, A1729, 10.1137/110854059
Narayan, 2014, A stochastic collocation algorithm with multifidelity models, SIAM J. Sci. Comput., 36, A495, 10.1137/130929461
Kolda, 2009, Tensor decompositions and applications, SIAM Rev., 51, 455, 10.1137/07070111X
Zhang, 2017, Big-data tensor recovery for high-dimensional uncertainty quantification of process variations, IEEE Trans. Compon. Packag. Manuf. Technol., 7, 687, 10.1109/TCPMT.2016.2628703
Conti, 2010, Bayesian emulation of complex multi-output and dynamic computer models, J. Stat. Plan. Inference, 140, 640, 10.1016/j.jspi.2009.08.006
Xing, 2016, Manifold learning for the emulation of spatial fields from computational models, J. Comput. Phys., 326, 666, 10.1016/j.jcp.2016.07.040
Ma, 2011, Kernel principal component analysis for stochastic input model generation, J. Comput. Phys., 230, 7311, 10.1016/j.jcp.2011.05.037
Acar, 2010, Scalable tensor factorizations for incomplete data, Chemom. Intell. Lab. Syst., 106, 41, 10.1016/j.chemolab.2010.08.004
Gandy, 2011, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Probl., 27, 10.1088/0266-5611/27/2/025010
Liu, 2013, Tensor completion for estimating missing values in visual data, 2114
Vidal, 2016
Kwok, 2004, The pre-image problem in kernel methods, IEEE Trans. Neural Netw., 15, 1517, 10.1109/TNN.2004.837781
Schölkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467
Gautschi, 1982, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput., 3, 289, 10.1137/0903018
Buzzard, 2011, Variance-based global sensitivity analysis via sparse-grid interpolation and cubature, Commun. Comput. Phys., 9, 542, 10.4208/cicp.230909.160310s
Lathauwer, 2000, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21, 1253, 10.1137/S0895479896305696
Boyd, 2011, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 10.1561/2200000016
Bertsekas, 1999
Arlot, 2010, A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40, 10.1214/09-SS054
Steinlechner, 2016, Riemannian optimization for high-dimensional tensor completion, SIAM J. Sci. Comput., 38, 461, 10.1137/15M1010506
Deng, 2016, On the global and linear convergence of the generalized alternating direction method of multipliers, J. Sci. Comput., 66, 889, 10.1007/s10915-015-0048-x
DeGroot, 2012
Ryckaert, 1977, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23, 327, 10.1016/0021-9991(77)90098-5
Elman, 2014
Elman, 2014, IFISS: a computational laboratory for investigating incompressible flow problems, SIAM Rev., 56, 261, 10.1137/120891393