Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set

Soft Computing - Tập 17 - Trang 1031-1046 - 2012
Tianjun Liao1, Marco A. Montes de Oca2, Thomas Stützle1
1IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
2Department of Mathematical Sciences, University of Delaware, Newark, USA

Tóm tắt

In this article, we apply an automatic algorithm configuration tool to improve the performance of the CMA-ES algorithm with increasing population size (iCMA-ES), the best performing algorithm on the CEC’05 benchmark set for continuous function optimization. In particular, we consider a separation between tuning and test sets and, thus, tune iCMA-ES on a different set of functions than the ones of the CEC’05 benchmark set. Our experimental results show that the tuned iCMA-ES improves significantly over the default version of iCMA-ES. Furthermore, we provide some further analyses on the impact of the modified parameter settings on iCMA-ES performance and a comparison with recent results of algorithms that use CMA-ES as a subordinate local search.

Tài liệu tham khảo

Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithms using fractional experimental designs and local search. Operations Res 54:99–114 Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Proceeding of IEEE Congress on Evolutionary Computation, CEC’05. IEEE Press, Piscataway, pp 1769–1776 Balaprakash P, Birattari M, Stützle T (2007) Improvement strategies for the F-Race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein et al. (eds) Proceedings of International Conference on Hybrid Metaheuristics, LNCS, vol 4771. Springer, Berlin pp 108–122 Bartz-Beielstein T (2006) Experimental research in evolutionary computation: the new experimentalism. Springer, Berlin Birattari M (2009) Tuning metaheuristics: a machine learning perspective, 1st edn. Springer, Berlin Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’02. Morgan Kaufmann, San Francisco, pp 11–18 Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-Race and Iterated F-Race: an overview. In: Bartz-Beielstein et al. (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin, pp 311–336 Hansen N (2010) The CMA evolution strategy: a tutorial. http://www.lri.fr/~hansen/cmatutorial.pdf Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, CEC’96. IEEE Press, Piscataway, pp 312–317 Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Comput 9(2):159–195 Hansen N, Muller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Comput 11(1):1–18 Herrera F, Lozano M, Molina D (2010) Test suite for the special issue of soft computing on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems. http://sci2s.ugr.es/eamhco/ Hoos HH, Stützle T (2004) Stochastic local search: foundations applications. Morgan Kaufmann, San Francisco Hutter F, Babic D, Hoos HH, Hu AJ (2007) Boosting verification by automatic tuning of decision procedures. In: Proceedings of Formal Methods in Computer Aided Design, FMCAD’07. IEEE Press, Piscataway, pp 27–34 Hutter F, Hoos HH, Leyton-Brown K, Murphy K (2009a) An experimental investigation of model-based parameter optimisation: SPO and beyond. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’09. ACM, New York, pp 271–278 Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009b) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res 36(1):267–306 Liao T, Molina D, Montes de Oca MA, Stützle T (2011a) A note on the effects of enforcing bound constraints on algorithm comparisons using the IEEE CEC’05 Benchmark Function Suite. Tech. Rep. TR/IRIDIA/2011-010, IRIDIA. Université Libre de Bruxelles, Belgium Liao T, Montes de Oca MA, Stützle T (2011b) Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set. http://iridia.ulb.ac.be/supp/IridiaSupp2011-023 Liao T, Montes de Oca MA, Stützle T (2011c) Tuning parameters across mixed dimensional instances: a performance scalability study of Sep-G-CMA-ES. In: Proceedings of the Workshop on Scaling Behaviours of Landscapes, Parameters and Algorithms of the Genetic and Evolutionary Computation Conference. GECCO’11, ACM, NY, pp 703–706 López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium Lozano M, Molina D, Herrera F (2011) Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft computing—a Fusion of Foundations. Methodol Appl 15:2085–2087 Mersmann O, Bischl B, Trautmann H, Preuss M, Weihs C, Rudolph G (2011) Exploratory landscape analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 11. ACM, NY, pp 829–836 Molina D, Lozano M, García-Martínez C, Herrera F (2010) Memetic algorithms for continuous optimisation based on local search chains. Evolutionary Comput 18(1):27–63 Müller CL, Baumgartner B, Sbalzarini IF (2009) Particle swarm CMA evolution strategy for the optimization of multi-funnel landscapes. In: Proceeding of IEEE Congress on Evolutionary Computation, CEC 09. IEEE Press, Piscataway, pp 2685–2692 Nannen V, Eiben AE (2007) Relevance estimation and value calibration of evolutionary algorithm parameters. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence. Morgan Kaufmann, San Francisco, pp 975–980 Ros R (2009) Benchmarking sep-CMA-ES on the BBOB- 2009 noisy testbed. In: Proceedings of the Conference Companion on Genetic and Evolutionary Computation Conference: late breaking papers. GECCO 09. ACM, NY , pp 2441–2446 Ros R, Hansen N (2008) A simple modification in CMA-ES achieving linear time and space complexity. In: Rudolph G et al. (eds) Parallel problem solving from nature PPSN X, vol 5199. Springer, Berlin, LNCS, pp 296–305 Smit SK, Eiben AE (2010) Beating the world champion evolutionary algorithm via REVAC tuning. In: Proceeding of IEEE Congress on Evolutionary Computation, CEC 10. IEEE Press, Piscataway, pp 1–8 Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Tech. Rep. 2005005, Nanyang Technological University