Fatigue behavior of in-situ TiB2/7050Al metal matrix composites: Fracture mechanisms and fatigue life modeling after milling

International Journal of Fatigue - Tập 138 - Trang 105698 - 2020
Yi-feng Xiong1, Wen-hu Wang1, Yao-yao Shi1, Rui-song Jiang2, Kun-yang Lin1, Xiao-fen Liu1
1School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, PR China
2School of Aeronautics and Astronautics, Sichuan University, Chengdu 610207, Sichuan, PR China

Tài liệu tham khảo

Xiao, 2013, Effects of surface roughness on the fatigue life of alloy steel. Key engineering materials, Trans Tech Publ, 525, 417 Taylor, 1991, The fatigue performance of machined surfaces, Fatigue Fract Eng Mater Struct, 14, 329, 10.1111/j.1460-2695.1991.tb00662.x Aono, 2005, Fatigue limit reliability of axisymmetric complex surface, Int J Fract, 131, 59, 10.1007/s10704-004-3638-4 Hallberg, 2018, Crystal plasticity modeling of microstructure influence on fatigue crack initiation in extruded Al6082-T6 with surface irregularities, Int J Fatigue, 111, 16, 10.1016/j.ijfatigue.2018.01.025 Santecchia, 2016, A review on fatigue life prediction methods for metals, Adv Mater Sci Eng, 2016, 1, 10.1155/2016/9573524 Ma, 2015, High cycle fatigue behavior of the in-situ TiB2/7050 composite, Mater Sci Eng, A, 640, 350, 10.1016/j.msea.2015.06.023 Wang, 2014, The constitutive model and processing map for in situ 5wt% TiB2 reinforced 7050 Al alloy matrix composite Key Engineering Materials, Trans Tech Publ, 575, 11 Xiong, 2018, Analytical model of workpiece temperature in end milling in-situ TiB2/7050Al metal matrix composites, Int J Mech Sci, 149, 285, 10.1016/j.ijmecsci.2018.10.008 Xiong, 2018, Machinability of in situ TiB2 particle reinforced 7050Al matrix composites with TiAlN coating tool, Int J Adv Manufact Technol, 97, 3813, 10.1007/s00170-018-2062-2 Novovic, 2004, The effect of machined topography and integrity on fatigue life, Int J Mach Tools Manuf, 44, 125, 10.1016/j.ijmachtools.2003.10.018 Yao, 2017, Surface integrity and fatigue behavior in shot-peening for high-speed milled 7055 aluminum alloy, Proc Inst Mech Eng Part B: J Eng Manufact, 231, 243, 10.1177/0954405415573704 Yao, 2014, Surface integrity and fatigue behavior for high-speed milling Ti-10V-2Fe-3Al titanium alloy, J Fail Anal Prev, 14, 102, 10.1007/s11668-013-9772-4 Yao, 2013, Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy, Transact Nonferr Metals Soc China, 23, 650, 10.1016/S1003-6326(13)62512-1 Yang, 2018, Surface integrity generated with peripheral milling and the effect on low-cycle fatigue performance of aeronautic titanium alloy Ti-6Al-4V, Aeronaut J, 122, 316, 10.1017/aer.2017.136 Cheng, 2015, Effect of surface topography on stress concentration factor, Chin J Mech Eng, 28, 1141, 10.3901/CJME.2015.0424.047 Neuber, 1958, 204 Arola, 1999, An examination of the effects from surface texture on the strength of fiber reinforced plastics, J Compos Mater, 33, 102, 10.1177/002199839903300201 Arola, 2002, Estimating the fatigue stress concentration factor of machined surfaces, Int J Fatigue, 24, 923, 10.1016/S0142-1123(02)00012-9 Zheng, 1986, A further study on fatigue crack initiation life—mechanical model for fatigue crack initiation, Int J Fatigue, 8, 17, 10.1016/0142-1123(86)90042-3 Andrews, 2000, A computer model for fatigue crack growth from rough surfaces, Int J Fatigue, 22, 619, 10.1016/S0142-1123(00)00018-9 Li, 2017, Fatigue life estimation of medium-carbon steel with different surface roughness, Appl Sci, 7, 338, 10.3390/app7040338 Tanaka, 1981, A dislocation model for fatigue crack initiation, J Appl Mech, 48, 97, 10.1115/1.3157599 Suraratchai, 2008, Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy, Int J Fatigue, 30, 2119, 10.1016/j.ijfatigue.2008.06.003 Ås, 2008, Surface roughness characterization for fatigue life predictions using finite element analysis, Int J Fatigue, 30, 2200, 10.1016/j.ijfatigue.2008.05.020 Li, 2018, Fatigue life prediction of workpiece with 3D rough surface topography based on surface reconstruction technology, J Central South Univ, 25, 2069, 10.1007/s11771-018-3896-3 Milan, 2004, Fatigue crack growth resistance of SiCp reinforced Al alloys: effects of particle size, particle volume fraction, and matrix strength, J Mater Eng Perform, 13, 612, 10.1361/10599490420638 Han, 1999, Effect of reinforcement on cyclic stress response of a particulate SiC/Al composite, Mater Lett, 38, 70, 10.1016/S0167-577X(98)00134-7 Xiong, 2016, Surface integrity of milling in-situ TiB2 particle reinforced Al matrix composites, Int J Refract Metal Hard Mater, 54, 407, 10.1016/j.ijrmhm.2015.09.007 Lin, 2019, Thermo-Mechanical Behavior and Constitutive Modeling of In Situ TiB2/7050 Al Metal Matrix Composites Over Wide Temperature and Strain Rate Ranges, Materials., 12, 1212, 10.3390/ma12081212 Hruby, 2014, Fatigue crack growth in SiC particle reinforced Al alloy matrix composites at high and low R-ratios by in situ X-ray synchrotron tomography, Int J Fatigue, 68, 136, 10.1016/j.ijfatigue.2014.05.010 Sharma, 2011, Fatigue behavior of SiC particulate reinforced spray-formed 7XXX series Al-alloys, Mater Des, 32, 4304, 10.1016/j.matdes.2011.04.009 Rutecka, 2011, Damage development of Al/SiC metal matrix composite under fatigue, creep and monotonic loading conditions, Procedia Eng, 10, 1420, 10.1016/j.proeng.2011.04.236 Tokaji, 2005, Effect of stress ratio on fatigue behaviour in SiC particulate-reinforced aluminium alloy composite, Fatigue Fract Eng Mater Struct, 28, 539, 10.1111/j.1460-2695.2005.00894.x Huang, 2017, Investigation of fatigue performance improvement in SiCw/Al composites with different modified shot peening treatments by considering surface mechanical properties, J Alloy Compd, 728, 169, 10.1016/j.jallcom.2017.08.269 Li, 1996, Quantitative study of correlation between fracture surface roughness and fatigue properties of SiC/Al composites, Mater Lett, 29, 235, 10.1016/S0167-577X(96)00150-4 Ås, 2005, Fatigue life prediction of machined components using finite element analysis of surface topography, Int J Fatigue, 27, 1590, 10.1016/j.ijfatigue.2005.07.031 Arola, 1996