Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi

Biochimie - Tập 130 - Trang 122-131 - 2016
Marina Rautenbach1, Anscha M. Troskie1, Johan A. Vosloo1, Margitta E. Dathe2
1BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
2Peptide-Lipid Interaction/Peptide Transport Group, Leibniz Institute of Molecular Pharmacology, Robert-Roessle-Str. 10, 13125, Berlin, Germany

Tài liệu tham khảo

Hotchkiss, 1941, The isolation of bactericidal substances from cultures of Bacillus brevis, J. Biol. Chem., 141, 155, 10.1016/S0021-9258(18)72830-5 Tang, 1992, Characterization of the tyrocidine and gramicidine fractions of the tyrothricin complex from Bacillus brevis using liquid chromatography and mass spectrometry, Int. J. Mass Spectrom. Ion. Process., 122, 153, 10.1016/0168-1176(92)87015-7 Spathelf, 2009, Anti-listerial activity and structure-activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus, Bioorg. Med. Chem., 17, 5541, 10.1016/j.bmc.2009.06.029 Leussa, 2014, Detailed SAR and PCA of the tyrocidines and analogues towards leucocin A-sensitive and leucocin A-resistant Listeria monocytogenes, Chem. Biol. Drug Des., 84, 543, 10.1111/cbdd.12344 Troskie, 2014, Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus, Microbiology, 160, 2089, 10.1099/mic.0.078840-0 Rautenbach, 2007, Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis, Biochim. Biophys. Acta, 1768, 1488, 10.1016/j.bbamem.2007.01.015 Kretschmar, 1996, Fungicidal effect of tyrothricin on Candida albicans, Mycoses, 39, 45, 10.1111/j.1439-0507.1996.tb00083.x Troskie, 2014, Synergistic activity of the tyrocidines, Antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms, Antimicrob. Agents Chemother., 58, 3697, 10.1128/AAC.02381-14 Robinson, 1942, Some toxicological and pharmacological properties of gramicidin, tyrocidine and tyrothricin, J. Pharmacol. Exp. Ther., 74, 75 Rammelkamp, 1942, Toxic effects of tyrothricin, gramicidin and tyrocidine, J. Infect. Dis., 71, 166, 10.1093/infdis/71.2.166 Balkovec, 2014, Discovery and development of first in class antifungal caspofungin (CANCIDAS®)—a case study, Nat. Prod. Rep., 31, 15, 10.1039/C3NP70070D Rammelkamp, 1942, Use of tyrothricin in the treatment of infections, War. Med., 2, 830 Nguyen, 2011, The expanding scope of antimicrobial peptide structures and their modes of action, Trends Biotechnol., 29, 464, 10.1016/j.tibtech.2011.05.001 Perrone, 2008, Reactive oxygen species and yeast apoptosis, BBA-Mol. Cell Res., 1783, 1354 De Medeiros, 2014, Psd1 binding affinity toward fungal membrane components as assessed by SPR: the role of glucosylceramide in fungal recognition and entry, Biopolymers, 102, 456, 10.1002/bip.22570 Aerts, 2007, The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans, J. Mol. Microbiol. Biotechnol., 13, 243, 10.1159/000104753 Helmerhorst, 2001, The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species, Proc. Natl. Acad. Sci., 98, 14637, 10.1073/pnas.141366998 Thevissen, 2003, Interactions of antifungal plant defensins with fungal membrane components, Peptides, 24, 1705, 10.1016/j.peptides.2003.09.014 Hale, 2007, Alternative mechanisms of action of cationic antimicrobial peptides on bacteria, Expert Rev. Anti-infect. Ther., 5, 951, 10.1586/14787210.5.6.951 Hancock, 2002, Role of membranes in the activities of antimicrobial cationic peptides, FEMS Microbiol. Lett., 206, 143, 10.1111/j.1574-6968.2002.tb11000.x Brogden, 2005, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol., 3, 238, 10.1038/nrmicro1098 Scocchi, 2016, Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria, Curr. Top. Med. Chem., 16, 76, 10.2174/1568026615666150703121009 Epand, 1999, Diversity of antimicrobial peptides and their mechanisms of action, Biochim. Biophys. Acta, 1462, 11, 10.1016/S0005-2736(99)00198-4 Vosloo, 2013, Manipulation of the tyrothricin production profile of Bacillus aneurinolyticus, Microbiology, 159, 2200, 10.1099/mic.0.068734-0 Troskie, 2012, A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi, J. Microbiol. Methods, 91, 551, 10.1016/j.mimet.2012.09.025 Rautenbach, 2006, Analyses of dose-response curves to compare the antimicrobial activity of model cationic α-helical peptides highlights the necessity for a minimum of two activity parameters, Anal. Biochem., 350, 81, 10.1016/j.ab.2005.11.027 Du Toit, 2000, A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity, J. Microbiol. Methods, 42, 159, 10.1016/S0167-7012(00)00184-6 van der Weerden, 2010, Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process, J. Biol. Chem., 285, 37513, 10.1074/jbc.M110.134882 Dathe, 1996, Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes, Biochemistry, 35, 12612, 10.1021/bi960835f Paradies, 1979, Aggregation of tyrocidine in aqueous solutions, Biochem. Biophys. Res. Commun., 88, 810, 10.1016/0006-291X(79)91480-3 Munyuki, 2013, β-Sheet structures and dimer models of the two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus, Biochemistry, 52, 7798, 10.1021/bi401363m Loll, 2014, The high resolution structure of tyrocidine A reveals an amphipathic dimer, BBA-Biomembranes, 1838, 1199, 10.1016/j.bbamem.2014.01.033 Pasanen, 1999, Ergosterol content in various fungal species and biocontaminated building materials, Appl. Environ. Microbiol., 65, 138, 10.1128/AEM.65.1.138-142.1999 Daum, 1998, Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, 14, 1471, 10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO;2-Y Mukhopadhyay, 2004, Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans, Antimicrob. Agents Chemother., 48, 1778, 10.1128/AAC.48.5.1778-1787.2004 Shahi, 2009, Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi, BBA Proteins Proteom., 1794, 852, 10.1016/j.bbapap.2008.12.012 Pasrija, 2005, Membrane raft lipid constituents affect drug susceptibilities of Candida albicans, Biochem. Soc. Trans., 33, 1219, 10.1042/BST0331219 Pasrija, 2008, Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts, Antimicrob. Agents Chemother., 52, 694, 10.1128/AAC.00861-07 Bagnat, 2000, Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast, Proc. Natl. Acad. Sci., 97, 3254, 10.1073/pnas.97.7.3254 Martin, 2004, Lipid raft polarization contributes to hyphal growth in Candida albicans, Eukaryot. Cell., 3, 675, 10.1128/EC.3.3.675-684.2004 Zhang, 2001, Interaction of cationic antimicrobial peptides with model membranes, J. Biol. Chem., 276, 35714, 10.1074/jbc.M104925200 Haney, 2010, Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action, Chem. Phys. Lipids, 163, 82, 10.1016/j.chemphyslip.2009.09.002 Schmidtchen, 2011, Membrane selectivity by W-tagging of antimicrobial peptides, Biochim. Biophys. Acta, 1808, 1081, 10.1016/j.bbamem.2010.12.020 Duarte, 1998, Structural characterization of neutral glycosphingolipids from Fusarium species, Biochim. Biophys. Acta, 1390, 186, 10.1016/S0005-2760(97)00179-3 Goncalves, 2012, Evaluation of the membrane lipid selectivity of the pea defensin Psd1, Biochim. Biophys. Acta, 1818, 1420, 10.1016/j.bbamem.2012.02.012 Steinberg, 2007, Hyphal growth: a tale of motors, lipids, and the Spitzenkorper, Eukaryot. Cell., 6, 351, 10.1128/EC.00381-06 Harris, 2008, Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems, Mycologia, 100, 823, 10.3852/08-177 Boyce, 2005, An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize, Eukaryot. Cell., 4, 2044, 10.1128/EC.4.12.2044-2056.2005 Mouyna, 2000, Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall, J. Biol. Chem., 275, 14882, 10.1074/jbc.275.20.14882 Rodriguez-Pena, 2000, A novel family of cell wall-related proteins regulated differently during the yeast life cycle, Mol. Cell. Biol., 20, 3245, 10.1128/MCB.20.9.3245-3255.2000 Cabib, 2007, Crh1p and Crh2p are required for the cross-linking of chitin to β (1-6) glucan in the Saccharomyces cerevisiae cell wall, Mol. Microbiol., 63, 921, 10.1111/j.1365-2958.2006.05565.x Dranginis, 2007, A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions, Microbiol. Mol. Biol. Rev., 71, 282, 10.1128/MMBR.00037-06 Cappellaro, 1994, Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin, EMBO J., 13, 4737, 10.1002/j.1460-2075.1994.tb06799.x Bowman, 2006, The structure and synthesis of the fungal cell wall, Bioessays, 28, 799, 10.1002/bies.20441 Li, 2003, Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5, J. Biol. Chem., 278, 28553, 10.1074/jbc.M300680200 Cabib, 2013, How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall, Nat. Rev. Microbiol., 11, 648, 10.1038/nrmicro3090 Rautenbach, 2015