A Riesz-Fejér type inequality for harmonic functions
Tài liệu tham khảo
Andreev, 2012, Fejér-Riesz type inequalities for Bergman spaces, Rend. Circ. Mat. Palermo, 61, 385, 10.1007/s12215-012-0097-z
Beckenbach, 1938, On a theorem of Fejér and Riesz, J. Lond. Math. Soc., 13, 82, 10.1112/jlms/s1-13.2.82
Borwein, 2008, Hilbert's inequality and Witten's zeta-function, Am. Math. Mon., 115, 125, 10.1080/00029890.2008.11920505
Calderón, 1950, On theorems of M. Riesz and Zygmund, Proc. Am. Math. Soc., 1, 533, 10.1090/S0002-9939-1950-0037394-3
Du Plessis, 1955, Half-space analogues of the Fejér-Riesz theorem, J. Lond. Math. Soc., 30, 296, 10.1112/jlms/s1-30.3.296
Duren, 1970, Theory of Hp Spaces, vol. 38
Frazer, 1934, On regular functions, J. Lond. Math. Soc., 9, 90, 10.1112/jlms/s1-9.2.90
Hardy, 1920, Note on a theorem of Hilbert, Math. Z., 6, 314, 10.1007/BF01199965
Hollenbeck, 2000, Best constants for the Riesz projection, J. Funct. Anal., 175, 370, 10.1006/jfan.2000.3616
Huber, 1956, On an inequality of Fejér and Riesz, Ann. Math., Ser. II, 63, 572, 10.2307/1970019
Kalaj, 2019, On Riesz type inequalities for harmonic mappings on the unit disk, Trans. Am. Math. Soc., 372, 4031, 10.1090/tran/7808
Kayumov, 2020, Riesz-Fejér inequalities for harmonic functions, Potential Anal., 52, 105, 10.1007/s11118-018-9732-4
Koosis, 1998, Introduction to Hp Spaces, vol. 115
Lozinski, 1944, On subharmonic functions and their application to the theory of surfaces, Izv. Akad. Nauk SSSR, Ser. Mat., 8, 175
Melentijević, 2021, Sharp Riesz–Fejér inequality for harmonic Hardy spaces, Potential Anal., 54, 575, 10.1007/s11118-020-09839-3
Pavlović, 2004, vol. 20
Steele, 2004
Wulan, 2011, The Fejér-Riesz inequality for the Besov spaces, Acta Math. Sin. Engl. Ser., 27, 1995, 10.1007/s10114-011-9286-5