A Riesz-Fejér type inequality for harmonic functions

Journal of Mathematical Analysis and Applications - Tập 507 - Trang 125812 - 2022
Suman Das1, Anbareeswaran Sairam Kaliraj1
1Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India

Tài liệu tham khảo

Andreev, 2012, Fejér-Riesz type inequalities for Bergman spaces, Rend. Circ. Mat. Palermo, 61, 385, 10.1007/s12215-012-0097-z Beckenbach, 1938, On a theorem of Fejér and Riesz, J. Lond. Math. Soc., 13, 82, 10.1112/jlms/s1-13.2.82 Borwein, 2008, Hilbert's inequality and Witten's zeta-function, Am. Math. Mon., 115, 125, 10.1080/00029890.2008.11920505 Calderón, 1950, On theorems of M. Riesz and Zygmund, Proc. Am. Math. Soc., 1, 533, 10.1090/S0002-9939-1950-0037394-3 Du Plessis, 1955, Half-space analogues of the Fejér-Riesz theorem, J. Lond. Math. Soc., 30, 296, 10.1112/jlms/s1-30.3.296 Duren, 1970, Theory of Hp Spaces, vol. 38 Frazer, 1934, On regular functions, J. Lond. Math. Soc., 9, 90, 10.1112/jlms/s1-9.2.90 Hardy, 1920, Note on a theorem of Hilbert, Math. Z., 6, 314, 10.1007/BF01199965 Hollenbeck, 2000, Best constants for the Riesz projection, J. Funct. Anal., 175, 370, 10.1006/jfan.2000.3616 Huber, 1956, On an inequality of Fejér and Riesz, Ann. Math., Ser. II, 63, 572, 10.2307/1970019 Kalaj, 2019, On Riesz type inequalities for harmonic mappings on the unit disk, Trans. Am. Math. Soc., 372, 4031, 10.1090/tran/7808 Kayumov, 2020, Riesz-Fejér inequalities for harmonic functions, Potential Anal., 52, 105, 10.1007/s11118-018-9732-4 Koosis, 1998, Introduction to Hp Spaces, vol. 115 Lozinski, 1944, On subharmonic functions and their application to the theory of surfaces, Izv. Akad. Nauk SSSR, Ser. Mat., 8, 175 Melentijević, 2021, Sharp Riesz–Fejér inequality for harmonic Hardy spaces, Potential Anal., 54, 575, 10.1007/s11118-020-09839-3 Pavlović, 2004, vol. 20 Steele, 2004 Wulan, 2011, The Fejér-Riesz inequality for the Besov spaces, Acta Math. Sin. Engl. Ser., 27, 1995, 10.1007/s10114-011-9286-5