Cryptic Expression of the 70-kDa Heat Shock Protein, hsp72, in Gerbil Hippocampus after Transient Ischemia

Neurochemical Research - Tập 23 - Trang 703-708 - 1998
J. Bradford Harrub1, Thaddeus S. Nowak1,2
1Department of Anatomy and Neurobiology and Department of Neurology, University of Tennessee, Memphis
2Department of Neurology, University of Tennessee, Memphis

Tóm tắt

The 70 kDa heat shock protein, hsp72, is known to be induced following transient global ischemia in brain, as detected by immunocytochemistry and in situ hybridization techniques. However, while hsp72 mRNA is expressed rapidly following postischemic recirculation, immunocytochemistry fails to detect hsp72 protein for many hours after such insults, even in cell populations that readily express Fos and other proteins encoded by ischemia-induced mRNAs. In the present study, hsp72 expression in gerbil hippocampus was compared by immunocytochemistry and immunoblot methods at several intervals following 10 min ischemia. As established in previous studies, hsp72 immunoreactivity remained undetectable in postischemic neurons at 6 h following such insults. In contrast, immunoblots of dissected gerbil hippocampus demonstrated nearly maximal accumulation of hsp72 at this time point. These results indicate that the protein is present, but cryptic to detection in perfusion-fixed sections, during early recirculation. The constitutively expressed heat shock cognate protein, hsc70, did not show significant changes in level or distribution by either method, except for a decrease in CA1 staining at 48 h. These results confirm that hsp72 rapidly accumulates to high levels in postischemic hippocampus, and suggest that further studies of its subcellular localization during this interval may offer insight into its functional role as a component of the stress response in neurons after such insults.

Tài liệu tham khảo

Lindquist, S. 1981. Regulation of protein synthesis during heat shock. Nature 293:311–314. Ernst, V., Baum, E. Z., and Reddy, P. 1982. Heat shock, protein phosphorylation and the control of translation in rabbit reticulocytes, reticulocyte lysates and HeLa cells. pp. 215–225, in Schlesinger, M.J., Ashburner, M. and Tissieres, A. (eds.), Heat Shock from Bacteria to Man, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Morimoto, R., Tissières, A., and Georgopoulos, C. (eds.) 1994. The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory Press, Plainview, NY. Weiss, B. F., Munro, H. N., and Wurtman, R. J. 1971. L-DOPA: disaggregation of brain polysomes and elevation of brain tryptophan. Science 173:833–835. Widelitz, M. M., Coryell, M. R., Widelitz, H., and Avadhani, N. G. 1975. Dissociation of rat brain polyribosomes in vivo by amphetamine. Brain Res. 100:215–220. Holbrook, L. A., and Brown, I. R. 1976. Disaggregation of brain polysomes after administration of d-lysergic acid diethylamide (LSD) in vivo. J. Neurochem. 27:77–82. Roel, L. E., Moskowitz, M. A., Rubin, D., Markovitz, D., Lytle, L. D., Munro, H. N., and Wurtman, R. J. 1978. In vivo inhibition of rat brain protein synthesis by d-amphetamine. J. Neurochem. 31:341–345. Moskowitz, M. A., Rubin, D., Liebschutz, J., Munro, H. N., Nowak, T. S., Jr., and Wurtman, R. J. 1977. The permissive role of hyperthermia in the disaggregation of brain polysomes by L-DOPA or D-amphetamine. J. Neurochem. 28:779–782. Heikkila, J. J., and Brown, I. R. 1979. Disaggregation of brain polysomes after LSD in vivo. Involvement of LSD-induced hyperthermia. Neurochem. Res. 4:763–776. Nowak, T. S., Jr. 1985. Role of hyperthermia in effects of electroconvulsive shock on protein synthesis in the rabbit. J. Neurochem. 44:1321–1325. Nowak, T. S., Jr. 1988. Effects of amphetamine on protein synthesis and energy metabolism in mouse brain: Role of drug-induced hyperthermia. J. Neurochem. 50:285–294. Heikkila, J. J., Cosgrove, J. W., and Brown, I. R. 1981. Cell-free translation of free and membrane-bound polysomes and polyadenylated mRNA from rabbit brain following administration of d-lysergic acid diethylamide in vivo. J. Neurochem. 36:1229–1238. Cosgrove, J. W., and Brown, I. R. 1983. Heat shock protein in mammalian brain and other organs after a physiologically relevant increase in body temperature induced by D-lysergic acid diethylamide. Proc. Natl. Acad. Sci. USA 80:569–573. Nowak, T. S., Jr. 1985.Synthesis of a stress protein following transient ischemia in the gerbil. J. Neurochem. 45:1635–1641. Dienel, G. A., Kiessling, M., Jacewicz, M., and Pulsinelli, W. A. 1986. Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J. Cereb. Blood Flow Metab. 6:505–510. Vass, K., Welch, W. J., and Nowak, T. S., Jr. 1988. Localization of 70 kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 77:128–135. Cooper, H. K., Zalewska, T., Hossmann, K.-A., and Kleihues, P. 1977. The effect of ischemia and recirculation on protein synthesis in the rat brain. J. Neurochem. 28:929–934. Nowak, T. S., Jr., Fried, R. L., Lust, W. D., and Passonneau, J. V. 1985. Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J. Neurochem. 44:487–494. Dienel, G. A., Pulsinelli, W. A., and Duffy, T. E. 1980. Regional protein synthesis in rat brain following acute hemispheric ischemia. J. Neurochem. 35:1216–1226. Thilmann, R., Xie, Y., Kleihues, P., and Kiessling, M. 1986. Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol. 71:88–93. Chopp, M., Li, Y., Dereski, M. O., Levine, S. R., Yoshida, Y., and Garcia, J. H. 1991. Neuronal injury and expression of 72-kDa heat-shock protein after forebrain ischemia in the rat. Acta Neuropathol. 83:66–71. Simon, R. P., Cho, H., Gwinn, R., and Lowenstein, D. H. 1991. The temporal profile of 72-kDa heat-shock protein expression following global ischemia. J. Neurosci. 11:881–889. Nowak, T. S., Jr., Osborne, O. C., and Suga, S. 1993. Stress protein and proto-oncogene expression as indicators of neuronal pathophysiology after ischemia. pp. 195–208, in Kogure, K., Hossmann, K.-A. and Siesjö, B. K. (eds.), Neurobiology of Ischemic Brain Damage—Progress in Brain Research, Vol. 96, Elsevier Science Publishers, Amsterdam. Kiessling, M., Stumm, G., Xie, Y., Herdegen, T., Aguzzi, A., Bravo, R., and Gass, P. 1993. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J. Cereb. Blood Flow Metab. 13:914–924. Takemoto, O., Tomimoto, H., and Yanagihara, T. 1995. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils. Stroke 26:1639–1648. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685. Towbin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354. Nowak, T. S., Jr. 1991. Localization of 70 kDa stress protein mRNA induction in gerbil brain after ischemia. J. Cereb. Blood Flow Metab. 11:432–439. Kawagoe, J., Abe, K., and Kogure, K. 1992. Different thresholds of HSP70 and HSC70 heat shock mRNA induction in post-ischemic gerbil brain. Brain Res. 599:197–203. Aoki, M., Abe, K., Kawagoe, J., Sato, S., Nakamura, S., and Kogure, K. 1993. Temporal profile of the induction of heat shock protein 70 and heat shock cognate protein 70 mRNAs after transient ischemia in gerbil brain. Brain Res. 601:185–192. Kirino, T., Tsujita, Y., and Tamura, A. 1991. Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb Blood Flow Metab. 11:299–307. Dwyer, B. E., Nishimura, R. N., and Brown, I. R. 1989. Synthesis of the major inducible heat shock protein in rat hippocampus after neonatal hypoxia-ischemia. Exp. Neurol. 104:28–31. Kawagoe, J., Abe, K., Sato, S., Nagano, I., Nakamura, S., and Kogure, K. 1992. Distributions of heat shock protein-70 mRNAs and heat shock cognate protein-70 mRNAs after transient global ischemia in gerbil brain. J. Cereb. Blood Flow Metab. 12:794–801. Welch, W. J., and Feramisco, J. R. 1984. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J. Biol. Chem. 259:4501–4513. Velazquez, J. M., and Lindquist, S. 1984. hsp70: Nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36:655–662. Gonzalez, M. F., Lowenstein, D., Fernyak, S., Hisanaga, K., Simon, R., and Sharp, F. R. 1991. Induction of heat shock protein 72-like immunoreactivity in the hippocampal formation following transient global ischemia. Brain Res. Bull. 26:241–250. Nishi, S., Taki, W., Uemura, Y., Higashi, T., Kikuchi, H., Kudoh, H., Satoh, M., and Nagata, K. 1993. Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res. 615:281–288. Milarski, K. L., Welch, W. J., and Morimoto, R. I. 1989. Cell cycle-dependent association of HSP70 with specific cellular proteins. J. Cell Biol. 108:413–423. Beckmann, R. P., Mizzen, L. A., and Welch, W. J. 1990. Interaction of hsp70 with newly synthesized proteins: Implications for protein folding and assembly. Science 248:850–854. Brown, C. R., Martin, R. L., Hansen, W. J., Beckmann, R. P., and Welch, W. J. 1993. The constitutive and stress inducible forms of hsp 70 exhibit functional similarities and interact with one another in an ATP-dependent fashion. J. Cell Biol. 120:1101–1112. Kitagawa, K., Matsumoto, M., Tagaya, M., Hata, R., Ueda, H., Niinobe, M., Handa, N., Fukunaga, R., Kimura, K., Mikoshiba, K., and Kamada, T. 1990. “Ischemic tolerance” phenomenon found in brain. Brain Res. 528:21–24. Abe, H., and Nowak, T. S., Jr. 1996. The stress response and its role in cellular defense mechanisms after ischemia pp (in press), in Siesjö, B. K. and Wieloch, T. (eds.), Cellular and Molecular Mechanisms of Ischemic Brain damage. Advances in Neurology, Vol. 71, Lippincott-Raven, Philadelphia. Araki, T., Kato, H., Inoue, T., and Kogure, K. 1990. Regional impairment of protein synthesis following brief cerebral ischemia in the gerbil. Acta Neuropathol. 79:501–505. Nakagomi, T., Kirino, T., Kanemitsu, H., Tsujita, Y., and Tamura, A. 1993. Early recovery of protein synthesis following ischemia in hippocampal neurons with induced tolerance in the gerbil. Acta Neuropathol. 86:10–15. Sommer, C., Gass, P., and Kiessling, M. 1995. Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state. Brain Pathol. 5:135–144.