Are long-term exposure studies needed? Short-term toxicokinetic model predicts the uptake of metal nanoparticles in earthworms after nine months
Tài liệu tham khảo
Amiard, 2006, Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers, Aquat. Toxicol., 76, 160, 10.1016/j.aquatox.2005.08.015
Ardestani, 2014, Uptake and elimination kinetics of metals in soil invertebrates: a review, Environ. Pollut., 193, 277, 10.1016/j.envpol.2014.06.026
Atiyeh, 2000, Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth, Pedobiologia, 44, 709, 10.1078/S0031-4056(04)70084-0
Baccaro, 2018, Ageing, dissolution and biogenic formation of nanoparticles: how do these factors affect the uptake kinetics of silver nanoparticles in earthworms?, Environ. Sci. Nano, 5, 1107, 10.1039/C7EN01212H
Bourdineaud, 2019, Gold and silver nanoparticles effects to the earthworm Eisenia fetida - the importance of tissue over soil concentrations, Drug Chem. Toxicol., 44, 12, 10.1080/01480545.2019.1567757
Bradl, 2004, Adsorption of heavy metal ions on soils and soils constituents, J. Colloid Interface Sci., 277, 1, 10.1016/j.jcis.2004.04.005
Calisi, 2014, Metallothionein induction in the coelomic fluid of the earthworm Lumbricus terrestris following heavy metal exposure: a short report, BioMed. Res. Int., 2014, 10.1155/2014/109386
Clark, 2019, Dietary exposure to silver nitrate compared to two forms of silver nanoparticles in rainbow trout: bioaccumulation potential with minimal physiological effects, Environ. Sci. Nano, 6, 1393, 10.1039/C9EN00261H
Cornelis, 2014, Fate and bioavailability of engineered nanoparticles in soils: a review, Crit. Rev. Environ. Sci. Technol., 44, 2720, 10.1080/10643389.2013.829767
Correia, 2002, Studies on biomarkers of copper exposure and toxicity in the marine amphipod Gammarus locusta (Crustacea): I. Induction of metallothionein and lipid peroxidation, Biomarkers, 7, 422, 10.1080/135475002760413516
Coutris, 2012, Aging and soil organic matter content affect the fate of silver nanoparticles in soil, Sci. Total Environ., 420, 327, 10.1016/j.scitotenv.2012.01.027
Croteau, 2011, Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag, Environ. Sci. Technol., 45, 6600, 10.1021/es200880c
Diez-Ortiz, 2015, Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO(3)) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils, Environ. Pollut., 203, 191, 10.1016/j.envpol.2015.03.033
Element, 2007, Method 3051A microwave assisted acid digestion of sediments, sludges, soils, and oils, Z. Für Anal. Chem., 111, 362
Fisker, 2016, Freezing of body fluids induces metallothionein gene expression in earthworms (Dendrobaena octaedra), Comp. Biochem Physiol. C Toxicol. Pharm., 179, 44, 10.1016/j.cbpc.2015.08.008
Gottschalk, 2009, Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions, Environ. Sci. Technol., 43, 9216, 10.1021/es9015553
Gottschalk, 2013, Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies, Environ. Pollut., 181, 287, 10.1016/j.envpol.2013.06.003
Hamer, 1986, Metallothionein, Annu. Rev. Biochem., 55, 913, 10.1146/annurev.bi.55.070186.004405
Hayashi, 2013, Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida, Ecotoxicol. Environ. Saf., 98, 219, 10.1016/j.ecoenv.2013.08.017
He, 2019, Silver sulfide nanoparticles in aqueous environments: formation, transformation and toxicity, Environ. Sci. Nano, 6, 1674, 10.1039/C9EN00138G
Hidalgo, 2017, Biomass assessment in annelids: a photogrammetric method suitable for hatchlings and adults developed for Eisenia andrei, Span. J. Soil Sci., 7
Homa, 2016, Metallothionein 2 and heat shock protein 72 protect allolobophora chlorotica from cadmium but not nickel or copper exposure: body malformation and coelomocyte functioning, Arch. Environ. Contam. Toxicol., 71, 267, 10.1007/s00244-016-0276-6
Jacob, 1999, Induction of metallothionein by stress and its molecular mechanisms, Gene Expr J. Liver Res., 7, 301
Kagi, 1993, Evolution, structure and chemical activities of class 1 metallothioneins: an overview, Metallothionein, 29
Kägi, 1991, Overview of metallothionein, 613, 10.1016/0076-6879(91)05145-L
Klitzke, 2015, The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation, Sci. Total Environ., 535, 54, 10.1016/j.scitotenv.2014.10.108
Klok, 2007, Effects of earthworm density on growth, development, and reproduction in Lumbricus rubellus (Hoffm.) and possible consequences for the intrinsic rate of population increase, Soil Biol. Biochem., 39, 2401, 10.1016/j.soilbio.2007.04.016
Laycock, 2016, Earthworm uptake routes and rates of ionic Zn and ZnO nanoparticles at realistic concentrations, traced using stable isotope labeling, Environ. Sci. Technol., 50, 412, 10.1021/acs.est.5b03413
Li, 2015, Rethinking stability of silver sulfide nanoparticles (Ag2S-NPs) in the aquatic environment: photoinduced transformation of Ag2S-NPs in the presence of Fe (III), Environ. Sci. Technol., 50, 188, 10.1021/acs.est.5b03982
Liu, 2010, Controlled release of biologically active silver from nanosilver surfaces, ACS Nano, 4, 6903, 10.1021/nn102272n
Makama, 2015, A novel method for the quantification, characterisation and speciation of silver nanoparticles in earthworms exposed in soil, Environ. Chem., 12, 643, 10.1071/EN15006
Mittelman, 2013, Influence of dissolved oxygen on silver nanoparticle mobility and dissolution in water-saturated quartz sand, J. Nanopart. Res., 15, 1765, 10.1007/s11051-013-1765-4
Molleman, 2017, Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium, Environ. Sci. Nano, 4, 1314, 10.1039/C6EN00564K
OECD, 2010. Test No. 317: Bioaccumulation in Terrestrial Oligochaetes.
Patricia, 2017, Responses to silver nanoparticles and silver nitrate in a battery of biomarkers measured in coelomocytes and in target tissues of Eisenia fetida earthworms, Ecotoxicol. Environ. Saf., 141, 57, 10.1016/j.ecoenv.2017.03.008
Peijnenburg, 1997, A conceptual framework for implementation of bioavailability of metals for environmental management purposes, Ecotoxicol. Environ. Saf., 37, 163, 10.1006/eesa.1997.1539
Rieuwerts, 1998, Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals, Chem. Speciat. Bioavailab., 10, 61, 10.3184/095422998782775835
Sekine, 2017, Aging of dissolved copper and copper-based nanoparticles in five different soils: short-term kinetics vs. long-term fate, J. Environ. Qual., 46, 1198, 10.2134/jeq2016.12.0485
Shi, 2018, Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: Oxidative dissolution by manganese oxide, Environ. Pollut., 243, 1242, 10.1016/j.envpol.2018.09.103
Slavich, 1993, Estimating the electrical conductivity of saturated paste extracts from 1: 5 soil, water suspensions and texture, Soil Res., 31, 73, 10.1071/SR9930073
Spurgeon, 2006, Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms, Environ. Toxicol. Chem. Int. J., 25, 788, 10.1897/05-045R1.1
Stürzenbaum, 2001, Metal ion trafficking in earthworms identification of a cadmium-specific metallothionein, J. Biol. Chem., 276, 34013, 10.1074/jbc.M103605200
Sun, 2014, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut., 185, 69, 10.1016/j.envpol.2013.10.004
Sutherland, 2011, The “magic numbers” of metallothionein, Metallomics, 3, 444, 10.1039/c0mt00102c
Tsyusko, 2012, Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida, Environ. Pollut., 171, 249, 10.1016/j.envpol.2012.08.003
Unrine, 2010, Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida), Environ. Sci. Technol., 44, 8308, 10.1021/es101885w
van den Brink, 2019, Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms, Environ. Sci. Nano, 6, 1985, 10.1039/C8EN01122B
Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6, 1769, 10.3762/bjnano.6.181
Viarengo, 1997, A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs, Mar. Environ. Res., 44, 69, 10.1016/S0141-1136(96)00103-1
Vijver, 2018, Emerging investigator series: the dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles, Environ. Sci. Nano, 5, 2473, 10.1039/C8EN00572A
Waalewijn-Kool, 2014, Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida, Ecotoxicology, 23, 1629, 10.1007/s10646-014-1302-y
Wagener, 2019, Determination of nanoparticle uptake, distribution, and characterization in plant root tissue after realistic long-term exposure to sewage sludge using information from mass spectrometry, Environ. Sci. Technol., 53, 5416, 10.1021/acs.est.8b07222
Wang, 2017, Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants, Environ. Sci. Nano, 4, 448, 10.1039/C6EN00489J
Whalen, 2000, Cattle manure amendments can increase the pH of acid soils, Soil Sci. Soc. Am. J., 64, 962, 10.2136/sssaj2000.643962x
Whalen, 1999, Quantification of nitrogen assimilation efficiencies and their use to estimate organic matter consumption by the earthworms Aporrectodea tuberculata (Eisen) and Lumbricus terrestris L, Appl. Soil Ecol., 13, 199, 10.1016/S0929-1393(99)00033-5
Zhang, 2018, The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms, Environ. Sci. Nano, 5, 2482, 10.1039/C8EN00688A