Analytical study of a solution-processed diode based on ZnO nanoparticles using multi-walled carbon nanotubes as Schottky contact

Journal of Materials Science: Materials in Electronics - Tập 33 - Trang 14508-14518 - 2022
Luis H. T. Bertoldo1, Gabriel L. Nogueira1, Douglas H. Vieira1, Maykel S. Klem1, Maíza S. Ozório1, Neri Alves1
1Department of Physics, School of Technology and Sciences (FCT), São Paulo State University – UNESP, Presidente Prudente, Brazil

Tóm tắt

The search for good electrodes processed by solution has interested several niches to produce printed solar cells, lighting emitting diodes, transistors, and photodetectors. In this context, carbon nanotube (CNT) has been reported as a promising electrode material, being suitable for several printing techniques such as inkjet, screen-printing, and spray-coating. Here, we present a successfully manufactured spray-deposited diode based on the Schottky junction between multi-walled carbon nanotubes (MWCNTs) and zinc oxide nanoparticles (ZnO-NPs), both deposited by spray. Using analytical methods, we estimated the diode series resistance as 6.2 k $${\Omega }$$ and the ideality factor as 2.2. The good morphological characteristics of the ZnO-NP and MWCNT films resulted in a good interface, allowing the junction to achieve a high effective Schottky barrier height of 0.82 eV, high rectification ratio of 1 × 104, and low turn-on voltage of 0.55 V.

Tài liệu tham khảo

D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482–1513 (2011). https://doi.org/10.1002/adma.201003188 M.S. Ozório et al., AZO transparent electrodes grown in situ during the deposition of zinc acetate dihydrate onto aluminum thin film by spray pyrolysis. J. Mater. Sci. Mater. Electron. 30(14), 13454–13461 (2019). https://doi.org/10.1007/s10854-019-01713-2 M. Aleksandrova, V. Videkov, R. Ivanova, A.K. Singh, G.S. Thool, Highly flexible, conductive and transparent PEDOT:PSS/Au/PEDOT:PSS multilayer electrode for optoelectronic devices. Mater. Lett. 174, 204–208 (2016). https://doi.org/10.1016/j.matlet.2016.03.127 G.L. Nogueira, D.H. Vieira, R.M. Morais, J.P.M. Serbena, K.F. Seidel, N. Alves, A sub-1 V, electrolyte-gated vertical field effect transistor based on ZnO/AgNW Schottky contact. IEEE Electron Device Lett. 3106(c), 1 (2021). https://doi.org/10.1109/led.2021.3120928 A.M. Alamri, S. Leung, M. Vaseem, A. Shamim, J.H. He, Fully Inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure. IEEE Trans. Electron Devices 66(6), 2657–2661 (2019). https://doi.org/10.1109/TED.2019.2911715 A.K. Sharma, R. Sharma, Fabrication and characterization of zinc oxide/multi-walled carbon nanotube Schottky barrier diodes. J. Electron. Mater. 47(5), 3037–3044 (2018). https://doi.org/10.1007/s11664-018-6170-4 M. Hengge, K. Livanov, N. Zamoshchik, F. Hermerschmidt, E.J.W. List-Kratochvil, ITO-free OLEDs utilizing inkjet-printed and low temperature plasma-sintered Ag electrodes. Flex. Print. Electron. (2021). https://doi.org/10.1088/2058-8585/abe604 M. Fernández Castro, E. Mazzolini, R.R. Sondergaard, M. Espindola-Rodriguez, J.W. Andreasen, Flexible ITO-free roll-processed large-area nonfullerene organic solar cells based on P3HT:O-IDTBR. Phys. Rev. Appl. 14(3), 1 (2020). https://doi.org/10.1103/PhysRevApplied.14.034067 R. Xu, K. Yang, Y. Zang, ZnO/Ag/ZnO multilayer transparent electrode for highly-efficient ITO-Free polymer solar cells. Curr. Appl. Phys. 20(3), 425–430 (2020). https://doi.org/10.1016/j.cap.2020.01.003 Z. Shu, E. Beckert, R. Eberhardt, A. Tünnermann, ITO-free, inkjet-printed transparent organic light-emitting diodes with a single inkjet-printed Al:ZnO:PEI interlayer for sensing applications. J. Mater. Chem. C 5(44), 11590–11597 (2017). https://doi.org/10.1039/c7tc04084a S. Kholghi Eshkalak, A. Chinnappan, W.A.D.M. Jayathilaka, M. Khatibzadeh, E. Kowsari, S. Ramakrishna, A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 9, 372–386 (2017). https://doi.org/10.1016/j.apmt.2017.09.003 H. Jung, J. Eun, G. Lee, N. Park, K. Kim, S. Chul, Effect of surface modification of multi-walled carbon nanotubes on the fabrication and performance of carbon nanotube based counter electrodes for dye-sensitized solar cells. Curr. Appl. Phys. 10(2), S165–S167 (2010). https://doi.org/10.1016/j.cap.2009.11.062 E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochem. Commun. 10(7), 1087–1089 (2008). https://doi.org/10.1016/j.elecom.2008.05.013 X. Cui, R. Lv, R.U.R. Sagar, C. Liu, Z. Zhang, Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim. Acta 169, 342–350 (2015). https://doi.org/10.1016/j.electacta.2015.04.074 X. Li et al., Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129, 236–244 (2018). https://doi.org/10.1016/j.carbon.2017.11.099 M.M. Charithra, J.G. Manjunatha, Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor. J. Electrochem. Sci. Eng. 10(1), 29–40 (2020). https://doi.org/10.5599/jese.717 N. Ben Messaoud, M.E. Ghica, C. Dridi, M. Ben Ali, C.M.A. Brett, Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuators B 253, 513–522 (2017). https://doi.org/10.1016/j.snb.2017.06.160 X. Wang et al., TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015). https://doi.org/10.1016/j.nanoen.2014.11.042 J. Zhao, J. Ma, X. Nan, B. Tang, Application of non-covalent functionalized carbon nanotubes for the counter electrode of dye-sensitized solar cells. Org. Electron. 30, 52–59 (2016). https://doi.org/10.1016/j.orgel.2015.11.032 D.H. Vieira, M. da Silva Ozório, G.L. Nogueira, L. Fugikawa-Santos, N. Alves, UV-photocurrent response of zinc oxide based devices: application to ZnO/PEDOT:PSS hydrid Schottky diodes. Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2020.105339 T.V. Richter et al., Room temperature vacuum-induced ligand removal and patterning of ZnO nanoparticles: from semiconducting films towards printed electronics. J. Mater. Chem. 20(5), 874–879 (2010). https://doi.org/10.1039/b916778c C. Weichsel, O. Pagni, A.W.R. Leitch, Electrical and hydrogen sensing characteristics of Pd/ZnO Schottky diodes grown on GaAs. Semicond. Sci. Technol. 20(8), 840–843 (2005). https://doi.org/10.1088/0268-1242/20/8/036 L. Chandra, P.K. Sahu, R. Dwivedi, V.N. Mishra, Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature. Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa9cb4 S.-R. Zhang, Y. Zhou, Introduction to semiconducting metal oxides, in Semiconducting Metal Oxide Thin-Film Transistors. (IOP Publishing, Bristol, 2020) V.B. Koli, A.G. Dhodamani, S.D. Delekar, S.H. Pawar, In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications. J. Photochem. Photobiol. A Chem. 333, 40–48 (2017). https://doi.org/10.1016/j.jphotochem.2016.10.008 N. Van Duy, N.D. Hoa, N.T. Dat, D.T.T. Le, N. Van Hieu, Ammonia-gas-sensing characteristics of WO3/carbon nanotubes nanocomposites: effect of nanotube content and sensing mechanism. Sci. Adv. Mater. 8(3), 524–533 (2016) N. Hernandez-Como, G. Rivas-Montes, F.J. Hernandez-Cuevas, I. Mejia, J.E. Molinar-Solis, M. Aleman, Ultraviolet photodetectors based on low temperature processed ZnO/PEDOT:PSS Schottky barrier diodes. Mater. Sci. Semicond. Process. 37, 14–18 (2015). https://doi.org/10.1016/j.mssp.2014.12.063 F.D. Nayeri, S. Darbari, E.A. Soleimani, S. Mohajerzadeh, Surface structure and field emission properties of cost effectively synthesized zinc oxide nanowire/multiwalled carbon nanotube heterojunction arrays. J. Phys. D. Appl. Phys. 45(28), 285101 (2012) J. Chang, C.K. Najeeb, J.-H. Lee, M. Lee, J.-H. Kim, High-performance photoresponse from single-walled carbon nanotube–zinc oxide heterojunctions. J. Phys. D. Appl. Phys. 44(9), 95101 (2011) J. Qu, C. Luo, Q. Cong, Synthesis of multi-walled carbon nanotubes/ZnO nanocomposites using absorbent cotton. Nano-Micro Lett. 3(2), 115–120 (2011) L. Chandra, P.K. Sahu, R. Dwivedi, V.N. Mishra, Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature. Mater. Res. Express 4, 125017 (2017). https://doi.org/10.1088/2053-1591/aa9cb4 M. Das, P. Das, J. Datta, D. Das, S. Acharya, P.P. Ray, Improved device performance of rod like ZnO in a Schottky type photosensor compared to particle like ZnO: Analysis of charge transport. Mater. Sci. Semicond. Process. 130(February), 105799 (2021). https://doi.org/10.1016/j.mssp.2021.105799 D.H. Vieira, A.H. Lima, M.S. Ozório, G.L. Nogueira, W.G. Quirino, N. Alves, The use of an rGO semi-transparent organic electrode in a ZnO Schottky diode for UV detection. J. Electron. Mater. 48, 7991–7999 (2019). https://doi.org/10.1007/s11664-019-07633-5 S. Dhar, T. Majumder, P. Chakraborty, S.P. Mondal, DMSO modified PEDOT:PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots. Org. Electron. 53, 101–110 (2018). https://doi.org/10.1016/j.orgel.2017.11.024 F.E. Jones, A.A. Talin, F. Léonard, P.M. Dentinger, W.M. Clift, Effect of electrode material on transport and chemical sensing characteristics of metal/carbon nanotube contacts. J. Electron. Mater. 35(8), 1641–1646 (2006). https://doi.org/10.1007/s11664-006-0211-0 Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A.C. Arias, A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32(15), 1–29 (2020). https://doi.org/10.1002/adma.201905279 W.H. Duan, Q. Wang, F. Collins, Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chem. Sci. 2(7), 1407–1413 (2011). https://doi.org/10.1039/c0sc00616e V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998). https://doi.org/10.1063/1.367375 M. Shiraishi, M. Ata, Work function of carbon nanotubes. Carbon 39(12), 1913–1917 (2001). https://doi.org/10.1016/S0008-6223(00)00322-5 E.W.J. Mitchell, J.W. Mitchell, The work functions of copper, silver and aluminium. Proc. R. Soc. London 210, 70–84 (1951). https://doi.org/10.1098/rspa.1951.0231 S.C. Lim et al., Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing. J. Nanosci. Nanotechnol. 14(11), 8665–8670 (2014). https://doi.org/10.1166/jnn.2014.10002 L.Y. Jun, L.S. Yon, N.M. Mubarak, K.S. Yeo, M. Khalid, C.H. Bing, Comparison of drying method on acid-functionalized multi-walled carbon nanotube and their application for dye removal. IOP Conf. Ser. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/495/1/012057 S.S. Shariffudin, M. Salina, S.H. Herman, M. Rusop, Effect of film thickness on structural, electrical, and optical properties of Sol-Gel deposited layer-by-layer ZnO nanoparticles. Trans. Electr. Electron. Mater. 13(2), 102–105 (2012). https://doi.org/10.4313/TEEM.2012.13.2.102 E. Miranda et al., Modeling of hysteretic Schottky diode-like conduction in Pt/BiFeO 3/SrRuO3 switches. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4894116 S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986). https://doi.org/10.1063/1.97359 H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50(7), 5052–5053 (1979). https://doi.org/10.1063/1.325607 V. Mikhelashvili, G. Eisenstein, R. Uzdin, Extraction of Schottky diode parameters with a bias dependent barrier height. Solid. State. Electron. 45(1), 143–148 (2001). https://doi.org/10.1016/S0038-1101(00)00227-6 K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60(3), 1223–1224 (1986). https://doi.org/10.1063/1.337372 D.H. Vieira, N. Badiei, J.E. Evans, N. Alves, J. Kettle, L. Li, Electrical characterisation of β-Ga2O3Schottky diode for deep UV sensor applications. Proc. IEEE Sens. (2020). https://doi.org/10.1109/SENSORS47125.2020.9278829 Y. Li, Y. Li, J. Zhang, T. Tong, W. Ye, Influence of B doping on the carrier transport mechanism and barrier height of graphene/ZnO Schottky contact. J. Phys. D. Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aaaa48 R. Liu et al., Gate modulation of graphene-ZnO nanowire schottky diode. Sci. Rep. 5, 1–6 (2015). https://doi.org/10.1038/srep10125 R. Yatskiv, J. Grym, Temperature-dependent properties of semimetal graphite-ZnO Schottky diodes. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4761958