On a family of Halley-like methods to find simple roots of nonlinear equations
Tài liệu tham khảo
Halley, 1694, A new, exact and easy method of finding the roots of equations generally and that without any previous reduction, Philos. Trans. R. Soc. London, 18, 136, 10.1098/rstl.1694.0029
Traub, 1964
P. Wynn, On a cubically convergent process for determining the zeros of certain functions. Math. Table & Other Aids Comp. 10, (1956) 97–100; MR 18, p. 418.
Candela, 1990, Recurrence relations for rational cubic methods I: The Halley method, Computing, 44, 169, 10.1007/BF02241866
Hernández, 1991, A note on Halley’s method, Numer. Math., 59, 273, 10.1007/BF01385780
Melman, 1997, Geometry and convergence of Euler’s and Halley’s methods, SIAM Rev., 39, 728, 10.1137/S0036144595301140
Scavo, 1995, On the geometry of Halley’s method, Am. Math. Mon., 102, 417, 10.2307/2975033
Hansen, 1977, A family of root finding methods, Numer. Math., 27, 257, 10.1007/BF01396176
Popovski, 1980, A family of one point iteration formulae for finding roots, Int. J. Comput. Math., 8, 85, 10.1080/00207168008803193
Frame, 1944, A variation of Newton’s method, Am. Math. Mon., 51, 36, 10.1080/00029890.1944.11990162
Hartree, 1949, Notes on iterative processes, Proc. Cambridge Philos. Soc., 45, 230, 10.1017/S0305004100024762
Hamilton, 1950, A type of variation on Newton’s method, Am. Math. Mon., 57, 517, 10.2307/2307934
Richmond, 1944, On certain formulae for numerical approximation, J. London Math. Soc., 19, 31, 10.1112/jlms/19.73_Part_1.31
Salehov, 1952, On the convergence of the process of tangent hyperbolas, Dokl. Akad. Nauk. SSSR, 82, 525
Schröder, 1870, Über unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann., 2, 317, 10.1007/BF01444024
Wall, 1948, A modification of Newton’s method, Am. Math. Mon., 55, 90, 10.2307/2305743
Neta, 2006
Petković, 2013
Neta, 2012, Basins of attraction for several methods to find simple roots of nonlinear equations, Appl. Math. Comput., 218, 10548, 10.1016/j.amc.2012.04.017
Householder, 1970
Basto, 2006, A new iterative method to compute nonlinear equations, Appl. Math. Comput., 173, 468, 10.1016/j.amc.2005.04.045
Vrscay, 1988, Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions, Numer. Math., 52, 1, 10.1007/BF01401018
Kneisl, 2001, Julia sets for the super-Newton method Cauchy’s method and Halley’s method, Chaos, 11, 359, 10.1063/1.1368137
M. Basto, V. Semiao, F. Calheiros, Contrasts in the basin of attraction of structurally identical iterative root finding methods, Appl. Math. Comput., in press.
Scott, 2011, Basin attractors for various methods, Appl. Math. Comput., 218, 2584, 10.1016/j.amc.2011.07.076
Neta, 2012, Basin attractors for various methods for multiple roots, Appl. Math. Comput., 218, 5043, 10.1016/j.amc.2011.10.071
B.D. Stewart, Attractor Basins of Various Root-Finding Methods, M.S. Thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA, June 2001.
S. Amat, S. Busquier, S. Plaza, Iterative root-finding methods, unpublished report, 2004.
Amat, 2004, Review of some iterative root-finding methods from a dynamical point of view, Scientia, 10, 3
Amat, 2004, Dynamics of a family of third-order iterative methods that do not require using second derivatives, Appl. Math. Comput., 154, 735, 10.1016/S0096-3003(03)00747-1
Amat, 2005, Dynamics of the King and Jarratt iterations, Aequationes Math., 69, 212, 10.1007/s00010-004-2733-y
Chun, 2012, On optimal fourth-order iterative methods free from second derivative and their dynamics, Appl. Math. Comput., 218, 6427, 10.1016/j.amc.2011.12.013