Scattered data interpolation of Radon data

Calcolo - Tập 48 - Trang 5-19 - 2010
R. K. Beatson1, W. zu Castell2
1Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
2Department of Scientific Computing, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

Tóm tắt

Linear combinations of translates of a given basis function have long been successfully used to solve scattered data interpolation and approximation problems. We demonstrate how the classical basis function approach can be transferred to the projective space ℙd−1. To be precise, we use concepts from harmonic analysis to identify positive definite and strictly positive definite zonal functions on ℙd−1. These can then be applied to solve problems arising in tomography since the data given there consists of integrals over lines. Here, enhancing known reconstruction techniques with the use of a scattered data interpolant in the “space of lines”, naturally leads to reconstruction algorithms well suited to limited angle and limited range tomography. In the medical setting algorithms for such incomplete data problems are desirable as using them can limit radiation dosage.

Tài liệu tham khảo

Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999) Atteia, M.: Hilbertian Kernels and Spline Functions. North-Holland, Amsterdam (1992) Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131(9), 2733–2740 (2003) Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, New York (1998) Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Bownian motion of several variables. Ann. Inst. H. Poincaré, Sec. B 3(2), 121–226 (1967) Godement, R.: Les fonctions du type positif et la théorie des groupes. Trans. Am. Math. Soc. 63(1), 1–84 (1948) (French) Helgason, S.: The Radon Transform, 2nd edn. Progress in Mathematics, vol. 5. Birkhäuser, Basel (1999) Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000) de las Heras, H., Beatson, R., zu Castell, W., Tischenko, O., Xu, Y., Hoeschen, C.: CT with dual optimal reading, compatibility of the two data sets and interpolation issues. In: Dössel, O., Schlegel, W.C. (eds.) World Congress 2009, International Federation for Medical and Biological Engineering Proceedings 25/II, pp. 579–582 (2009) Hubbert, S., Morton, T.M.: L p -error estimates for radial basis function interpolation on the sphere. J. Approx. Theory 129(1), 58–77 (2004) Hubbert, S.: Radial basis function interpolation on the sphere. Thesis, Imperial College, London (2002) Levesley, J., Luo, Z.: Error estimates for Hermite interpolation on spheres. J. Math. Anal. Appl. 281, 46–61 (2003) Levesley, J., Ragozin, D.L.: Radial basis function interpolation on homogeneous manifolds: convergence rates. Adv. Comput. Math. 27(2), 237–246 (2007) Light, W., Wayne, H.: On power functions and error estimates for radial basis function interpolation. J. Approx. Theory 92(2), 245–266 Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. Springer, Berlin (1966) Natterer, F.: The Mathematics of Computerized Tomography. Classics in Applied Mathematics, vol. 32. Society of Industrial and Applied Mathematics, Philadelphia (2001) Narcowich, F.J.: Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold. J. Math. Anal. Appl. 190, 165–193 (1995) Quinto, E.T.: Exterior and limited angle tomography in non-destructive evaluation. Inverse Probl. 14, 339–353 (1998) Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942) Stein, M.L.: Interpolation of Spatial Data. Some Theory for Kriging. Springer Series in Statistics. Springer, New York (1999) Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)