Using nonlinear model predictive control for dynamic decision problems in economics

Journal of Economic Dynamics and Control - Tập 60 - Trang 112-133 - 2015
Lars Grüne1, Willi Semmler2,3,4, Marleen Stieler1
1Mathematical Institute, University of Bayreuth, Germany
2New School For Social Research, New York, United States of America
3University of Bielefeld, Germany
4Center for European Economic Research, Mannheim, Germany

Tài liệu tham khảo

Amrit, 2011, Economic optimization using model predictive control with a terminal cost, Annu. Rev. Control, 35, 178, 10.1016/j.arcontrol.2011.10.011 Angeli, D., Amrit, R., Rawlings, J.B., 2009. Receding horizon cost optimization for overly constrained nonlinear plants. In: Proceedings of the 48th IEEE Conference on Decision and Control, CDC 2009, Shanghai, China, pp. 7972–7977. Angeli, D., Rawlings, J.B., 2010. Receding horizon cost optimization and control for nonlinear plants. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, Bologna, Italy, pp. 1217–1223. Aruoba, 2006, Comparing solution methods for dynamic equilibrium economies, J. Econ. Dyn. Control, 30, 2477, 10.1016/j.jedc.2005.07.008 Azariadis, 1990, Thresholds externalities in economic development, Q. J. Econ., 105, 501, 10.2307/2937797 Bertsekas, D.P., 2005. Dynamic Programming and Optimal Control, vol. 1, 3 edn., Athena Scientific, Nashua, NH, USA Bréchet, C., Camacho, C., Veliov, V.M., 2012. Adaptive model-predictive climate policies in a multi-country setting. Documents de Travail du Centre d'Economie de la Sorbonne 2012.29. Brock, 1972, Optimal economic growth and uncertainty: the discounted case, J. Econ. Theory, 4, 479, 10.1016/0022-0531(72)90135-4 Brock, 1976, Global asymptotic stability of optimal control systems with applications to the theory of economic growth, J. Econ. Theory, 12, 164, 10.1016/0022-0531(76)90031-4 Brock, W., Starrett, D., 1999. Nonconvexities in ecological management problems. SSRI Working Paper 2026, Department of Economics, University of Wisconsin–Madison. Camilli, 1995, An approximation scheme for the optimal control of diffusion processes, RAIRO, Modélisation Math. Anal. Numér., 29, 97, 10.1051/m2an/1995290100971 Cannon, 2009, Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty, IEEE Trans. Autom. Control, 54, 1626, 10.1109/TAC.2009.2017970 Capuzzo Dolcetta, 1983, On a discrete approximation of the Hamilton–Jacobi equation of dynamic programming, Appl. Math. Optim., 10, 367, 10.1007/BF01448394 Juillard, 2001, Accuracy of stochastic perturbation methods, J. Econ. Dyn. Control, 25, 979, 10.1016/S0165-1889(00)00064-6 Couchman, 2006, Stochastic MPC with inequality stability constraints, Automatica, 42, 2169, 10.1016/j.automatica.2006.07.006 Damm, 2014, An exponential turnpike theorem for dissipative discrete time optimal control problems, SIAM J. Control Optim., 52, 1935, 10.1137/120888934 Diehl, 2011, A Lyapunov function for economic optimizing model predictive control, IEEE Trans. Autom. Control, 56, 703, 10.1109/TAC.2010.2101291 Dorfman, R., Samuelson, P.A., Solow, R.M., 1987. Linear Programming and Economic Analysis. Dover Publications, New York, Reprint of the 1958 original. Falcone, 1987, A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim., 15, 1, 10.1007/BF01442644 Farmer, 2009, Understanding Markov-switching rational expectations models, J. Econ. Theory, 144, 1849, 10.1016/j.jet.2009.05.004 Feichtinger, 2001, The dynamics of a simple relative adjustment-cost framework, German Econ. Rev., 2, 255, 10.1111/1468-0475.00037 Greiner, 2014, Economic growth and the transition from non-renewable to renewable energy, Environ. Dev. Econ., 19, 417, 10.1017/S1355770X13000491 Greiner, A., Semmler, W., 2008. The Global Environment, Natural Resources, and Economic Growth. Oxford University Press, Oxford, UK. Greiner, A., Semmler, W., Diallo, B., Rezai, A., Rajaram, A., 2007. Fiscal policy, public expenditure composition, and growth. Theory and Empirics, World Bank Policy Research Paper no. 4405. Grüne, 1997, An adaptive grid scheme for the discrete Hamilton–Jacobi–Bellman equation, Numer. Math., 75, 319, 10.1007/s002110050241 Grüne, 2013, Economic receding horizon control without terminal constraints, Automatica, 49, 725, 10.1016/j.automatica.2012.12.003 Grüne, L., Pannek, J., 2011. Nonlinear Model Predictive Control. Theory and Algorithms, Springer-Verlag, London. Grüne, 2004, Using dynamic programming with adaptive grid scheme for optimal control problems in economics, J. Econ. Dyn. Control, 28, 2427, 10.1016/j.jedc.2003.11.002 Grüne, 2014, Asymptotic stability and transient optimality of economic MPC without terminal conditions, J. Process Control, 24, 1187, 10.1016/j.jprocont.2014.05.003 Haunschmied, 2003, A DNS-curve in a two-state capital accumulation model: a numerical analysis, J. Econ. Dyn. Control, 27, 701, 10.1016/S0165-1889(01)00070-7 Judd, 1997, Asymptotic methods for aggregate growth models, J. Econ. Dyn. Control, 21, 1025, 10.1016/S0165-1889(97)00015-8 Judd, 1998 Juillard, 2011, Multi-country real business cycle models, J. Econ. Dyn. Control, 35, 178, 10.1016/j.jedc.2010.09.011 Kaganovich, 1985, Efficiency of sliding plans in a linear model with time-dependent technology, Rev. Econ. Stud., 52, 691, 10.2307/2297740 Kerrigan, E.C., 2000. Robust Constraint Satisfaction: Invariant Sets and Predictive Control (Ph.D. thesis). University of Cambridge. McKenzie, L.W., 1986. Optimal economic growth, turnpike theorems and comparative dynamics. In: Handbook of Mathematical Economics, vol. III, North-Holland, Amsterdam, pp. 1281–1355. Nordhaus, 2008 Parra-Alvarez, J.C., 2012. A comparison of numerical methods for the solution of continuous-time DSGE models, Manuscript. University of Aarhus. Rawlings, 2009 Santos, M.S., Vigo-Aguiar, J., 1995. Accuracy estimates for a numerical approach to stochastic growth models, Discussion Paper 107. Institute for Empirical Macroeconomics, Federal Reserve Bank of Minneapolis. Santos, 1998, Analysis of a numerical dynamic programming algorithm applied to economic models, Econometrica, 66, 409, 10.2307/2998564 Scheinkman, 1976, On optimal steady states of n-sector growth models when utility is discounted, J. Econ. Theory, 12, 11, 10.1016/0022-0531(76)90026-0 Sims, C.A., 2005. Rational inattention: a research agenda. In: Discussion Paper Series 1: Economic Studies. 34, Deutsche Bundesbank Research Centre. Sims, 2006, Rational inattention, Am. Econ. Rev., 96, 158, 10.1257/000282806777212431 Skiba, 1978, Optimal growth with a convex–concave a production function, Econometrica, 46, 527, 10.2307/1914229 von Neumann, 1945, A model of general economic equilibrium, Rev. Econ. Stud., 13, 1, 10.2307/2296111 Zaslavski, 2006 Zaslavski, 2014