Antimony(III) sulfide complexes in aqueous solutions at 30 °C: A solubility and XAS study

Chemical Geology - Tập 476 - Trang 233-247 - 2018
Nellie J. Olsen1,2, Bruce W. Mountain2, Terry M. Seward1
1School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
2Wairakei Research Centre, GNS Science, 114 Karetoto Road, Taupo 3377, New Zealand

Tài liệu tham khảo

Akeret, 1953 Akinifiyev, 1994, Experimental studies and self-consistent thermodynamic data in the Sb(III)-S(II)-O-H system, Geochem. Int., 31, 27 Albéric, 2014, 45, 1088 Andreae, 1984, Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea, Tellus B, 36, 101, 10.1111/j.1600-0889.1984.tb00232.x Arntson, 1966, Stibnite (Sb2S3) solubility, Science, 153, 1673, 10.1126/science.153.3744.1673 Babko, 1956, Equilibrium in reactionsof formation of thiosalts of tin, antimony, and arsenic in solution, Russ. J. Inorg. Chem., 1, 969 Belevantsev, 1998, Antimony in hydrothermal solutions: analysis and generalization of data on antimony(III) chloride complexes, Geochem. Int., 36, 928 Belevantsev, 1998, Solubility of stibnite, Sb2S3(cr): a revision of proposed interpretations and refinements, Geochem. Int., 36, 58 Bregant, 1990, Some chemical characteristics of the brines in Bannock and Tyro Basins: salinity, sulphur compounds, Ca2+, F-, pH, At, PO43-, SiO2, NH3, Mar. Chem., 31, 35, 10.1016/0304-4203(90)90030-G Buschmann, 2004, Antimony(III) binding to humic substances: influence of pH and type of humic acid, Environ. Sci. Technol., 38, 4535, 10.1021/es049901o Chen, 2003, Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes, Environ. Sci. Technol., 37, 1163, 10.1021/es025931k Cutter, 1991, Dissolved arsenic and antimony in the Black Sea, Deep Sea Res. Part A, Oceanogr. Res. Pap., 38, S825, 10.1016/S0198-0149(10)80011-1 Fawcett, 2009, Optimizing experimental design, overcoming challenges, and gaining valuable information from the Sb K-edge XANES region, Am. Mineral., 94, 1377, 10.2138/am.2009.3112 Fiala, 1950, Uber das Dreistoffsystem Na2S-Sb2S3-H2O. II. Dei auftretenden Bodenkorper und ihre Loslichkeit, Monatsh. Chem., 81, 505, 10.1007/BF00906439 Filella, 2003, Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters, Geochim. Cosmochim. Acta, 67, 4013, 10.1016/S0016-7037(03)00095-4 Glover, 2007, Status of the X-Ray Absorption Spectroscopy (XAS) Beamline at the Australian Synchrotron, AIP Conf. Proc., 882, 884, 10.1063/1.2644692 Goyet, 1991, The carbonate systems in the Black Sea, Deep Sea Res. Part A: Oceanogr. Res. Pap., 38, S1049, 10.1016/S0198-0149(10)80023-8 Gushchina, 2000, Formation of antimony (III) complexes in alkali sulfide solutions at high temperatures: an experimental Raman spectroscopic study, 2Geochem. Int., 38, 510 Helgeson, 1974, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Huckel parameters for activity coefficients and relative partial molal properties, Am. J. Sci., 274, 1199, 10.2475/ajs.274.10.1199 Helz, 2002, Antimony speciation in alkaline sulfide solutions: role of zerovalent sulfur, Environ. Sci. Technol., 36, 943, 10.1021/es011227c Ho, 1996, Ion association of dilute aqueous sodium hydroxide solutions to 600°C and 300 MPa by conductance measurements, J. Solut. Chem., 25, 711, 10.1007/BF00973780 Ho, 1994, Electrical-conductivity measurements of aqueous sodium-chloride solutions to 600-d°C and 300-Mpa, J. Solut. Chem., 23, 997, 10.1007/BF00974100 Ilgen, 2012, Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony, Geochim. Cosmochim. Acta, 94, 128, 10.1016/j.gca.2012.07.007 Ilgen, 2014, Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater, Geochim. Cosmochim. Acta, 132, 16, 10.1016/j.gca.2014.01.019 Kappen Keller, 2014, Determination of arsenic speciation in sulfidic waters by ion chromatography hydride-generation atomic fluorescence spectrometry (IC-HG-AFS), Talanta, 128, 466, 10.1016/j.talanta.2014.04.035 Kielland, 1937, Individual activity coefficients of ions in aqueous solutions, J. Am. Chem. Soc., 59, 1675, 10.1021/ja01288a032 Kolpakova, 1971, On the speciation of antimony(III) in sulfide solutions, 197 Kolpakova, 1982, Laboratory and field studies of ionic equilibria in the Sb2S3-H2O-H2S system, Geochem. Int., 19, 46 Krause, 1979, Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger Lines, J. Phys. Chem. Ref. Data, 8, 329, 10.1063/1.555595 Krupp, 1988, Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350°C, Geochim. Cosmochim. Acta, 52, 3005, 10.1016/0016-7037(88)90164-0 Lundegaard, 2003, Equation of state and crystal structure of Sb2S3 between 0 and 10 GPa, Phys. Chem. Miner., 30, 463, 10.1007/s00269-003-0339-x Luther, 1990, Reduced sulfur in the hypersaline anoxic basins of the Mediterranean Sea, Mar. Chem., 31, 137, 10.1016/0304-4203(90)90035-B Luther, 1991, Sulfur speciation and sulfide oxidation in the water column of the Black Sea, Deep Sea Res. Part A. Oceanogr. Res. Pap., 38, S1121, 10.1016/S0198-0149(10)80027-5 Marshall, 1981, Ion product of water substance, 0-1000 °C, 1-10,000 bars, J. Phys. Chem. Ref. Data, 10, 295, 10.1063/1.555643 Millet, 2003, Study of the valence state and coordination of antimony in MoVSbO catalysts determined by XANES and EXAFS, Appl. Catal. A Gen., 244, 359, 10.1016/S0926-860X(02)00614-2 Mosselmans, 2000, A study of speciation of Sb in bisulfide solutions by X-ray absorption spectroscopy, Appl. Geochem., 15, 879, 10.1016/S0883-2927(99)00080-3 Oakdale Engineering, 2000 Oelkers, 1998, 21 Olsen, 2016 Peterson, 1968, Crystal structure and cation distribution in freibergite and tetrahedrite, Mineral. Mag., 50, 717, 10.1180/minmag.1986.050.358.19 Planer-Friedrich, 2011, Formation and structural characterization of thioantimony species and their natural occurrence in geothermal waters, Environ. Sci. Technol., 45, 6855, 10.1021/es201003k Planer-Friedrich, 2012, The stability of tetrathioantimonate in the presence of oxygen, light, high temperature and arsenic, Chem. Geol., 322–323, 1, 10.1016/j.chemgeo.2012.06.010 Planer-Friedrich, 2010, Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence, Anal. Chem., 82, 10228, 10.1021/ac1024717 Pokrovski, 2006, Antimony speciation in saline hydrothermal fluids: a combined X-ray absorption fine structure spectroscopy and solubility study, Geochim. Cosmochim. Acta, 70, 4196, 10.1016/j.gca.2006.06.1549 Popova, 1975, Measurement of the thermodynamic parameters of antimony hydroxo complexes and Hydroxofluoride complexes up to 200°C, Geokhimiya, 6, 835 Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719 Ritchie, 2013, Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska, Chem. Geol., 335, 172, 10.1016/j.chemgeo.2012.10.016 Robinson, 1968 Sherman, 2000, Antimony transport in hydrothermal solutions: an EXAFS study of antimony(V) complexation in alkaline sulfide and sulfide-chloride brines at temperatures from 25°C to 300°C at P(sat), Chem. Geol., 167, 161, 10.1016/S0009-2541(99)00207-7 Shestitko, 1971, Potentiometric determination of the composition of the sulphide anions of antimony, Russ. J. Inorg. Chem., 16, 1679 Shikina, 1999, 37, 90 Sinsermsuksakul, 2012, Antimony-doped tin(II) sulfide thin films, Chem. Mater., 24, 4556, 10.1021/cm3024988 Spycher, 1989, As(III) and Sb(III) sulfide complexes: an evaluation of stoichiometry and stability from existing experimental data, Geochim. Cosmochim. Acta, 53, 2185, 10.1016/0016-7037(89)90342-6 Suleimenov, 1997, A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350°C, Geochim. Cosmochim. Acta, 61, 5187, 10.1016/S0016-7037(97)00291-3 Tella, 2009, Antimony(III) complexing with O-bearing organic ligands in aqueous solution: an X-ray absorption fine structure spectroscopy and solubility study, Geochim. Cosmochim. Acta, 73, 268, 10.1016/j.gca.2008.10.014 Tossell, 1994, The speciation of antimony in sulfidic solutions: a theoretical study, Geochim. Cosmochim. Acta, 58, 5093, 10.1016/0016-7037(94)90296-8 Tossell, 2003, Calculation of the energetics for the oxidation of Sb(III) sulfides by elemental S and polysulfides in aqueous solution, Geochim. Cosmochim. Acta, 67, 3347, 10.1016/S0016-7037(03)00129-7 Tossell, 2003, Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution, Geochem. Trans., 4, 28, 10.1186/1467-4866-4-28 Ullrich, 2013, Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand, J. Volcanol. Geotherm. Res., 262, 164, 10.1016/j.jvolgeores.2013.07.007 Van der Weijden, 1990, Profiles of the redox-sensitive trace elements As, Sb, V, Mo and U in the Tyro and Bannock Basins (eastern Mediterranean), Mar. Chem., 31, 171, 10.1016/0304-4203(90)90037-D Whitten, 2004, Charge density analysis of two polymorphs of antimony(III) oxide, Dalt. Trans., 1 Wood, 1989, Raman spectroscopic determination of the speciation of ore metals in hydrothermal solutions: I. Speciation of antimony in alkaline sulfide solutions at 25??C, Geochim. Cosmochim. Acta, 53, 237, 10.1016/0016-7037(89)90376-1 Zakaznova-Herzog, 2006, Antimonous acid protonation/deprotonation equilibria in hydrothermal solutions to 300°C, Geochim. Cosmochim. Acta, 70, 2298, 10.1016/j.gca.2006.01.029 Zakaznova-Herzog, 2012, A spectrophotometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22°C, Geochim. Cosmochim. Acta, 83, 48, 10.1016/j.gca.2011.12.022 Zakaznova-Herzog, 2006, Arsenous acid ionisation in aqueous solutions from 25 to 300 °C, Geochim. Cosmochim. Acta, 70, 1928, 10.1016/j.gca.2006.01.014