Understanding the impact change of a highly cited article: a content-based citation analysis

Scientometrics - Tập 112 - Trang 927-945 - 2017
Chao Lu1,2, Ying Ding2,3,4, Chengzhi Zhang1,5,6
1Department of Information Management, Nanjing University of Science and Technology, Nanjing, China
2School of Informatics and Computing, Indiana University Bloomington, Bloomington, USA
3School of Information Management, Wuhan University, Wuhan, China
4Library, Tongji University, Shanghai, China
5Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing University, Nanjing, China
6Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing, China

Tóm tắt

Researchers tend to cite highly cited articles, but how these highly cited articles influence the citing articles has been underexplored. This paper investigates how one highly cited essay, Hirsch’s “h-index” article (H-article) published in 2005, has been cited by other articles. Content-based citation analysis is applied to trace the dynamics of the article’s impact changes from 2006 to 2014. The findings confirm that citation context captures the changing impact of the H-article over time in several ways. In the first two years, average citation mention of H-article increased, yet continued to decline with fluctuation until 2014. In contrast with citation mention, average citation count stayed the same. The distribution of citation location over time also indicates three phases of the H-article “Discussion,” “Reputation,” and “Adoption” we propose in this study. Based on their locations in the citing articles and their roles in different periods, topics of citation context shifted gradually when an increasing number of other articles were co-mentioned with the H-article in the same sentences. These outcomes show that the impact of the H-article manifests in various ways within the content of these citing articles that continued to shift in nine years, data that is not captured by traditional means of citation analysis that do not weigh citation impacts over time.

Tài liệu tham khảo

Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159–170. Alsaad, A., & Abbod, M. (2015). Enhanced topic identification algorithm for Arabic Corpora. In Proceedings of the 17th UKSIM-AMSS International Conference on Modelling and Simulation. Angrosh, M., Cranefield, S., & Stanger, N. (2012). A citation centric annotation scheme for scientific Articles. Paper presented at the Proceedings of Australasian Language Technology Association Workshop. Ball, P. (2005). Index aims for fair ranking of scientists. Nature, 436, 900. Baneyx, A. (2008). “Publish or Perish” as citation metrics used to analyze scientific output in the humanities: International case studies in economics, geography, social sciences, philosophy, and history. Archivum immunologiae et therapiae experimentalis, 56(6), 363–371. Bar-Ilan, Judit. (2008). Which h-index?—A comparison of WoS. Scopus and Google Scholar. Scientometrics, 74(2), 257–271. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning Research, 3, 993–1022. Bornmann, L., & Daniel, H. D. (2007). What do we know about the h index? Journal of the American Society for Information Science and Technology, 58(9), 1381–1385. Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173. Brown, P. (1980). The half-life of the chemical literature. Journal of the American Society for Information Science, 31(1), 61–63. Burton, R. E., & Kebler, R. (1960). The “half-life” of some scientific and technical literatures. American Documentation, 11(1), 18–22. Cano, V. (1989). Citation behavior: Classification, utility, and location. Journal of the American Society for Information Science, 40(4), 284–290. Case, D. O., & Higgins, G. M. (2000). How can we investigate citation behavior? A study of reasons for citing literature in communication. Journal of the American Society for Information Science, 51(7), 635–645. Charles, J. P. (1988). Citation analysis of astronomical literature: Comments on citation half-lives. Publications of the Astronomical Society of the Pacific, 100(623), 106. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. Ding, Y., Liu, X., Guo, C., & Cronin, B. (2013). The distribution of references across texts: Some implications for citation analysis. Journal of Informetrics, 7, 583–592. Ding, Y., & Stirling, K. (2016). Data-driven discovery: A new era of exploiting the literature and data. Journal of Data and Information Science, 1(4), 1–9. Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., & Zhai, C. (2014). Content-based citation analysis: The next generation of citation analysis. Journal of the Association for Information Science and Technology, 65(9), 1820–1833. Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and Technology, 38(1), 188–230. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152. Garfield, E. (1964). Science citation index: A new dimension in indexing. Science, 144(3619), 649–654. Hack, T. F., Crooks, D., Plohman, J., & Kepron, E. (2014). Citation analysis of Canadian psycho-oncology and supportive care researchers. Supportive Care in Cancer, 22(2), 315–324. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572. Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sciences, 104(49), 19193–19198. Hu, Z., Chen, C., & Liu, Z. (2013). Where are citations located in the body of scientific articles? A study of the distributions of citation locations. Journal of Informetrics, 7, 887–896. Hu, B., Dong, X., Zhang, C., Bowman, T. D., Ding, Y., Milojević, S., et al. (2015). A lead-lag analysis of the topic evolution patterns for preprints and publications. Journal of the Association for Information Science and Technology, 66(12), 2643–2656. Imperial, J., & Rodríguez-Navarro, A. (2007). Usefulness of Hirsch’s h-index to evaluate scientific research in Spain. Scientometrics, 71(2), 271–282. Ioannidis, J. P. (2010). Is there a glass ceiling for highly cited scientists at the top of research universities? The FASEB Journal, 24(12), 4635–4638. Järvelin, K., & Persson, O. (2008). The DCI index: Discounted cumulated impact-based research evaluation. Journal of the American Society for Information Science and Technology, 59(9), 1433–1440. Jeong, Y. K., Song, M., & Ding, Y. (2014). Content-based author co-citation analysis. Journal of Informetrics, 8, 197–211. Kaplan, D., Tokunaga, T., & Teufel, S. (2016). Citation block determination using textual coherence. Journal of Information Processing, 24(3), 540–553. Kim, H. J., Jeong, Y. K., & Song, M. (2016). Content- and proximity-based author co-citation analysis using citation sentences. Journal of Informetrics, 10(4), 954–966. Kosmulski, M. (2006). A new Hirsch-type index saves time and works equally well as the original h-index. ISSI newsletter, 2(3), 4–6. Lazaridis, T. (2010). Ranking university departments using the mean h-index. Scientometrics, 82(2), 211–216. Lee, Y. -S., Lo, R., Chen, C. -Y., Lin, P. -C., & Wang, J. -C. (2015). News topics categorization using latent Dirichlet allocation and sparse representation classifier. In Proceedings of the IEEE international conference on consumer electronics. Line, M. B., & Sandison, A. (1974). Progress in documentation: “Obsolescence” and changes in the use of literature with time. Journal of documentation, 30(3), 283–350. Lipetz, B. A. (1965). Improvement of the selectivity of citation indexes to science literature through inclusion of citation relationship indicators. American Documentation, 16(2), 81–90. Liu, X., Zhang, J., & Guo, C. (2013). Fulltext citation analysis: A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 64(9), 1852–1863. MacRoberts, M. H., & MacRoberts, B. R. (1989). Problems of citation analysis: A critical review. Journal of the American Society for Information Science, 40(5), 342. McKeown, K., Daume, H., Chaturvedi, S., Paparrizos, J., Thadani, K., Barrio, P., et al. (2016). Predicting the impact of scientific concepts using full-text features. Journal of the Association for Information Science and Technology, 67(1), 2684–2696. Mikki, S. (2010). Comparing google scholar and ISI web of science for earth sciences. Scientometrics, 82(2), 321–331. Minasny, B., Hartemink, A. E., & McBratney, A. (2007). Soil science and the h index. Scientometrics, 73(3), 257–264. Moravcsik, M. J., & Murugesan, P. (1975). Some results on the function and quality of citations. Social Studies of Science, 5(1), 86–92. Oppenheim, C. (2007). Using the h-index to rank influential British researchers in information science and librarianship. Journal of the American Society for Information Science and Technology, 58(2), 297–301. Pathak, M., & Bharati, K. A. (2014). Botanical survey of India (1971–2010): A scientometric analysis. Current Science, 106(7), 964. Pulina, G., & Ana Helena Dias, F. (2007). Some bibliometric indexes for members of the Scientific Association of Animal Production (ASPA). Italian Journal of Animal Science, 6(1), 83–103. Ruane, F., & Tol, R. (2008). Rational (successive) h-indices: An application to economics in the Republic of Ireland. Scientometrics, 75(2), 395–405. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513–523. Schlachter, G. (1988). Obsolescence, weeding, and bibliographic love canals. RQ, 28(1), 7–9. Schreiber, M. (2008). The influence of self-citation corrections on Egghe’sg index. Scientometrics, 76(1), 187–200. Schuetz, P., & Caflisch, A. (2008). Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Physical Review E, 77(4), 046112. Small, H. G. (1978). Cited documents as concept symbols. Social Studies of Science, 8(3), 327–340. Small, H., Tseng, H., & Patek, M. (2017). Discovering discoveries: Identifying biomedical discoveries using citation contexts. Journal of Informetrics, 11(1), 46–62. Tang, X., Wan, X., & Zhang, X. (2014). Cross-language context-aware citation recommendation in scientific articles. In Proceedings of the 37th international ACM SIGIR Conference on Research & Development in Information Retrieval. Teufel, S. (2000). Argumentative zoning: Information extraction from scientific text. CiteseerX. Retrieved at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.485. Tsay, M.-Y. (1998). Library journal use and citation half-life in medical science. Journal of the American Society for Information Science, 49(14), 1283–1292. Venable, G. T., Shepherd, B. A., Roberts, M. L., Taylor, D. R., Khan, N. R., & Klimo, P., Jr. (2014). An application of Bradford’s law: Identification of the core journals of pediatric neurosurgery and a regional comparison of citation density. Child’s Nervous System, 30(10), 1717–1727. Voos, H., & Dagaev, K. S. (1976). Are all citations equal? Or, did we op. cit. your idem? Journal of Academic Librarianship, 1(6), 19–21. Wan, X., & Liu, F. (2014a). Are all literature citations equally important? Automatic citation strength estimation and its applications. Journal of the Association for Information Science and Technology, 65, 1929–1938. Wan, X., & Liu, F. (2014b). WL-index: Leveraging citation mention number to quantify an individual’s scientific impact. Journal of the Association for Information Science and Technology, 65(12), 2509–2517. Zhang, G., Ding, Y., & Milojević, S. (2013). Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content. Journal of the American Society for Information Science and Technology, 64(7), 1490–1503. Zhao, D., & Strotmann, A. (2015). Dimensions and uncertainties of author citation rankings: Lessons learned from frequencyweighted in-text citation counting. Journal of the Association for Information Science and Technology, 67(3), 671–682.