Chemical content and estimated sources of fine fraction of particulate matter collected in Krakow
Tóm tắt
The monitored level of pollution remains high in Krakow, Poland. Alerts regarding increased levels of pollution, which advise asthmatics, the elderly, and children to limit their exposure to open air, continue to be issued on numerous days. In this work, seasonal variations in PM2.5 (particulate matter containing particles with aerodynamic diameter no higher than 2.5 μm) concentrations are shown. An increasing trend is reported, which is enhanced during the colder seasons. The mean PM2.5 concentrations in Krakow exceeded the target value of 25 μg/m3 specified for 2015 in the spring, autumn, and winter seasons. For this reason, particulate matter pollution is of special concern. Elemental concentrations as well as the presence of black carbon (BC) and black smoke (BS) in PM2.5 samples were determined. Seasonal variations of Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, and Pb concentrations were observed whereas V, Cr, Ni, BC, and BS concentrations did not significantly change with the time of year. Seven factors were identified by the positive matrix factorization (PMF) technique, and one was non-identified. They were attributed to the following sources of pollution: steel industry, traffic (diesel exhaust), traffic (gasoline exhaust, brake wear), road dust, construction dust, combustion (biomass, coal), and non-ferrous metallurgical industry. The last, non-identified source, could be attributed to secondary aerosols. It is worth to mention that combustion shows significant seasonal variations with a high impact in winter. The reported results of the completed studies may significantly aid in solving air quality issues in the city by highlighting major sources of air pollution.
Tài liệu tham khảo
Anenberg SC, Horowitz LW, Tong DQ, West JJ (2010) An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Persp 118:1189–1195. doi:10.1289/ehp.0901220
Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242
Cuccia E, Massabo D, Ariola V, Bove MC, Fermo P, Piazzalunga A, Prati P (2013) Size-resolved comprehensive characterization of airborne particulate matter. Atmos Environ 67:14–26. doi:10.1016/j.atmosenv.2012.10.045
EU Directive 2008/50/EC of the European Parliament and the Council of 21 May 2008.
Jedynska A, Hoek G, Eeftens M, Cyrys J, Keuken M, Ampe C, Beelen, Cesaroni G, Forastiere F, Cirach M, de Hoogh K, de Nazelle A, Madsen C, Declercq C, Eriksen K,T, Katsouyanni K, Akhlaghi H, M, Lanki T, Meliefste K, Nieuwenhuijsen M, Oldenwening M, Pennanen A, Raaschou-Nielsen O, Brunekreef B, Kooter I, M (2014) Spatial variations of PAH, hopanes/steranes and EC/OC concentrations within and between European study areas. Atmos Environ 87:239–248. doi:10.1016/jatmosenv.2014.01.026
Kabata-Pendias A, Pendias H (1999) Biogeochemistry of trace elements. PWN, Warsaw (In Polish)
Kim JJ, Smorodinsky S, Lipsett M, Singer BC, Hodgson AT, Ostro B (2004) Traffic-related air pollution near busy roads: the East Bay Children’s Respiratory Health Study. Am J Resp Crit Care 170:520–526
Laupsa H, Denby B, Larssen S, Schaug J (2009) Source apportionment of particulate matter (PM2.5) in an urban area using dispersion, receptor and inverse modelling. Atmos Environ 43:4733–4744. doi:10.1016/j.atmosenv.2008.07.010
Lim J, Jeong J, Lee J, Moon J, Chung Y, Kim K (2011) The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air 21:145–155. doi:10.1111/j.1600-0668.2010.00691.x
Marconi M, Sferlazzo DM, Becagli S, Bommarito C, Calzolai G, Chiari M, Sarra A, Ghedini C, Gómez-Amo JL, Lucarelli F, Meloni D, Monteleone F, Nava S, Pace G, Piacentino S, Rugi F, Severi M, Traversi R, Udisti R (2014) Saharan dust aerosol over the Central Mediterranean Sea: PM10 chemical composition and concentration versus optical columnar measurements. Atmos Chem Phys 14:2039–2054. doi:10.5194/acp-14-2039-2014
Masiol M, Squizzato S, Rampazzo G, Pavoni B (2014) Source apportionment of PM2.5 at multiple sites in Venice (Italy): spatial variability and the role of weather. Atmos Environ 98:78–88. doi:10.1016/j.atmosenv.2014.08.059
Mazzei F, Alessandro AD, Lucarelli F, Nava S, Prati P, Valli G, Vecchi R (2008) Characterization of particulate matter sources in an urban environment. Sci Total Environ 401:81–89. doi:10.1016/j.scitotenv.2008.03.008
Moreno T, Querol X, Alastuey A, Viana M, Salvador P, de la Campa AS, Artinano B, de la Rosa J, Gibbons W (2006) Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmos Environ 40:6791–6803. doi:10.1016/j.atmosenv.2006.05.074
Ostro B, Tobias A, Karanasiou A, Samoli E, Querol X, Rodopoulou S, Basagana X, Eleftheriadis K, Diapouli E, Vratolis S, Jacquemin B, Katssouyanni K, Suner J, Forastiere F, Stafoggia M (2015) The risk of acute exposure to black carbon in southern Europe: results from the MED-PARTICLES project. Occup Environ Med 72:123–129. doi:10.1136/oemed-2014-102184
Paatero P (1997) Least squares formulation of robust nonnegative factor analysis. Atmos Environ 37:23–35. doi:10.1016/S0169-7439(96)00044-5
Pollisar AV (1998) Atmospheric aerosol over Alaska: 2. Elemental Composition and Sources J Geophys Res 10:19045–19057. doi:10.1029/98JD01212
Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sanchez de la Campa S, Artinano B, Salvador P, Garcia Dos Santos S, Fernandez-Patier R, Moreno-Grau S, Negral L, Minguillon MC, Monfort E, Gil JI, Inza A, Ortega LA, Santameria JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231. doi:10.1016/j.atmosenv.2007.05.022
Quincey P (2007) A relationship between Black Smoke Index and black carbon concentration. Atmos Environ 41:7964–7968. doi:10.1016/j.atmosenv.2007.09.033
Regulation of the Minister of the Environment (2012) on the levels of certain substances in the air 24 August 2012, Dz.U. 1031
Samek L (2012) Source apportionment of the PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika 57(4):601–606
Samek L, Furman L, Kawik T, Welnogorska K (2015) Application of X-ray fluorescence method for elemental analysis of PM2.5 fraction. Nukleonika 60(3):621–626
Samek L (2016) Overall human mortality and morbidity due to exposure to air pollution. Int J Occup Med Env 29: 417–426. doi:10.13075/ijomeh.1896.00560
Samek L, Gdowik A, Ogarek J, Furman L (2016) Elemental composition and rough source apportionment of fine particulate matter in Krakow, Poland. Environ Prot Eng (in press)
Terrouche A, Ali-Khodja H, Kemmouche A, Bouziane M, Derradji A, Charron A (2016) Identification of sources of atmospheric particular matter and trace metals in Constantine, Algeria. Air Qual Atmos Health 9:69–82. doi:101007/s11869–014–0308-1
Vekemans B, Janssens K, Vincze L, Adams F, Van Espen P (1994) Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom 23:278–285. doi:10.1002/xrs.1300230609
Viana M, Maenhaut W, ten Brink HM, Chi X, Weijrs E, Querol X, Alastuey A, Mikuska P, Vecela Z (2007) Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmos Environ 41:5972–5983. doi:10.1016/j.atmosenv.2007.03.035
Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius m, szidat S, Prevot ASH, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. Aerosol Sci 39:827–849. doi:10.1016/j.jaerosci.2008.05.007
Yu L, Wang G, Zhang R, Zhang L, Song Y, Wu B, Li X, An K, Chu J (2013) Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual Res 13:574–583. doi:10.4209/aaqr.2012.07.0192
Zhang N, Han B, He F, Xu J, Niu C, Zhou J, Kong S, Bai Z, Xu H (2015) Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Qual Atmos Health 8:347–357. doi:10.1007/s11869-014-0289-0