Mass Transport in Vegetated Shear Flows

Environmental Fluid Mechanics - Tập 5 Số 6 - Trang 527-551 - 2005
Ghisalberti, Marco1, Nepf, Heidi2
1Centre for Water Research, University of Western Australia, Crawley, Australia
2Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA

Tóm tắt

Submerged aquatic vegetation has the potential to greatly improve water quality through the removal of nutrients, particulates and trace metals. The efficiency of this removal depends heavily upon the rate of vertical mixing, which dictates the timescale over which these constituents remain in the canopy. Continuous dye injection experiments were conducted in a flume with model vegetation to characterize vertical mass transport in vegetated shear flows. Through the absorbance–concentration relationship of the Beer–Lambert Law, digital imaging was used to provide high-resolution concentration profiles of the dye plumes. Vertical mass transport is dominated by the coherent vortices of the vegetated shear layers. This is highlighted by the strong periodicity of the transport and its simple characterization based on properties of the shear layer. For example, the vertical turbulent diffusivity is directly proportional to the shear and thickness of the layer. The turbulent diffusivity depends upon the size of the plume, such that the rate of plume growth is lower near the source. In the far-field, mass is mixed more than twice as rapidly as momentum. Finally, plume size is dictated predominantly by X, a dimensionless distance that scales upon the number of vortex rotations experienced by the plume.

Tài liệu tham khảo

citation_journal_title=J. Exp. Mar. Biol. Ecol.; citation_title=The influence of plant structure on the species richness, biomass and secondary production of macrofaunal assemblages associated with Western Australian seagrass beds; citation_author=G.J. Edgar; citation_volume=137; citation_publication_date=1990; citation_pages=215-240; citation_id=CR1 citation_title=Treatment Wetlands; citation_publication_date=1996; citation_id=CR2; citation_author=R.H. Kadlec; citation_author=R.L. Knight; citation_publisher=Lewis Publishers citation_journal_title=Plant Soil.; citation_title=Vegetation is the main factor in nutrient retention in a constructed wetland buffer; citation_author=N. Silvan, H. Vasander, J. Laine; citation_volume=258; citation_publication_date=2004; citation_pages=179-187; citation_doi=10.1023/B:PLSO.0000016549.70555.9d; citation_id=CR3 citation_journal_title=Am. J. Bot.; citation_title=Diffusivity in a marine macrophyte canopy: implications for submarine pollination and dispersal; citation_author=J.D. Ackerman; citation_volume=89; citation_issue=7; citation_publication_date=2002; citation_pages=1119-1127; citation_id=CR4 citation_journal_title=Rev. Fluid Mech.; citation_title=Turbulence in plant canopies, Annu; citation_author=J. Finnigan; citation_volume=32; citation_issue=1; citation_publication_date=2000; citation_pages=519-571; citation_id=CR5 citation_journal_title=J. Hydraul. Eng.; citation_title=Three-dimensional organized vortices above flexible water plants; citation_author=S. Ikeda, M. Kanazawa; citation_volume=122; citation_issue=11; citation_publication_date=1996; citation_pages=634-640; citation_id=CR6 citation_journal_title=Bound.-Layer Meteorol.; citation_title=Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy; citation_author=M. Raupach, J. Finnigan, Y. Brunet; citation_volume=78; citation_publication_date=1996; citation_pages=351-382; citation_doi=10.1007/BF00120941; citation_id=CR7 citation_journal_title=Bound.-Layer Meteorol.; citation_title=Observation of organized structure in turbulent flow within and above a forest canopy; citation_author=W. Gao, R. Shaw, K. Paw U.; citation_volume=47; citation_publication_date=1989; citation_pages=349-377; citation_doi=10.1007/BF00122339; citation_id=CR8 citation_journal_title=J. Geophys. Res.; citation_title=Mixing layers and coherent structures in vegetated aquatic flows; citation_author=M. Ghisalberti, H. Nepf; citation_volume=107; citation_issue=C2; citation_publication_date=2002; citation_pages=3-1-3-11; citation_doi=10.1029/2001JC000871; citation_id=CR9 Ghisalberti M., Nepf H. (2004). The limited growth of vegetated shear layers. Water. Resour. Res.40. W07502, doi:10.1029/2003WR002776. citation_journal_title=J. Geophys. Res.; citation_title=Flow structure in depth-limited, vegetated flow; citation_author=H. Nepf, E. Vivoni; citation_volume=105; citation_issue=C12; citation_publication_date=2000; citation_pages=28547-28557; citation_doi=10.1029/2000JC900145; citation_id=CR11 citation_journal_title=Limnol. Oceanogr.; citation_title=A model for diffusion within emergent vegetation; citation_author=H. Nepf, J. Sullivan, R. Zavistoski; citation_volume=42; citation_issue=8; citation_publication_date=1997; citation_pages=1735-1745; citation_id=CR12 citation_title=A study of eelgrass beds in Boston Harbor and northern Massachusetts bays; citation_publication_date=1996; citation_id=CR13; citation_author=M. Chandler; citation_author=P. Colarusso; citation_author=R. Buschsbaum; citation_publisher=U.S. Environ. Prot. Agency citation_title=Mean flow and turbulence in a laboratory channel with simulated vegetation; citation_publication_date=1996; citation_id=CR14; citation_author=C. Dunn; citation_author=F. Lopez; citation_author=M. Garcia; citation_publisher=Dept. of Civil Engineering University of Illinois at Urbana-Champaign citation_journal_title=Bound.-Layer Meteorol.; citation_title=The effect of vegetation density on canopy sub-layer turbulence; citation_author=D. Poggi, A. Porporato, L. Ridol, J. Albertson, G. Katul; citation_volume=111; citation_publication_date=2004; citation_pages=565-587; citation_id=CR15 citation_journal_title=J. Contam. Hydrol.; citation_title=On the application of image analysis to determine concentration distributions in laboratory experiments; citation_author=R.A. Schincariol, E.E. Herderick, F.W. Schwartz; citation_volume=12; citation_publication_date=1993; citation_pages=197-215; citation_id=CR16 citation_journal_title=Environ. Sci. Technol.; citation_title=Reactive transport in porous media: a comparison of model prediction with laboratory visualization; citation_author=C.M. Gramling, null Harvey, null C.F., L.C. Meigs; citation_volume=36; citation_publication_date=2002; citation_pages=2508-2514; citation_doi=10.1021/es0157144; citation_id=CR17 citation_journal_title=Atmos. Environ.; citation_title=Spatially averaged flow within obstacle arrays; citation_author=T. Bentham, R. Britter; citation_volume=37; citation_publication_date=2003; citation_pages=2037-2043; citation_doi=10.1016/S1352-2310(03)00123-7; citation_id=CR18 citation_journal_title=Adv. Geophys.; citation_title=Limitations of gradient transport models in random walks and in turbulence; citation_author=S. Corrsin; citation_volume=18; citation_publication_date=1974; citation_pages=25-60; citation_id=CR19 Launder B. (1976). Topics in Applied Physics, Vol. 12, Chapt. 6. Heat and Mass Transport, pp. 231–287. Springer-Verlag. citation_journal_title=Atmos. Environ.; citation_title=Turbulent Schmidt number for diffusion models in the neutral boundary layer; citation_author=S. Hassid; citation_volume=17; citation_issue=3; citation_publication_date=1983; citation_pages=523-527; citation_id=CR21 citation_journal_title=Atmos. Environ.; citation_title=The height dependence of the turbulent Schmidt number within the boundary layer; citation_author=K. Koeltzsch; citation_volume=34; citation_publication_date=2000; citation_pages=1147-1151; citation_doi=10.1016/S1352-2310(99)00369-6; citation_id=CR22 citation_journal_title=Bound.-Layer Meteorol.; citation_title=Three-dimensional scalar microfront systems in a large-eddy simulation of vegetation canopy flow; citation_author=L. Fitzmaurice, R.H. Shaw, K.T. Paw U, E.G. Patton; citation_volume=112; citation_publication_date=2004; citation_pages=107-127; citation_doi=10.1023/B:BOUN.0000020159.98239.4a; citation_id=CR23 citation_journal_title=Deep-Sea Res.; citation_title=Ocean diffusion diagrams; citation_author=A. Okubo; citation_volume=18; citation_publication_date=1971; citation_pages=789-802; citation_id=CR24 citation_journal_title=Limnol. Oceanogr.; citation_title=Natural dispersion in a small lake; citation_author=G.A. Lawrence, K.I. Ashley, N. Yonemitsu, J.R. Ellis; citation_volume=40; citation_issue=8; citation_publication_date=1995; citation_pages=1519-1526; citation_id=CR25 Weitbrecht V., Uijttewaal W., Jirka G.H. (2004). 2-D Particle tracking to determine transport characteristics in rivers with dead zones, In: Shallow Flows, G.H. Jirka and W.S.J. Uijttewaal (eds.), pp. 477–484, A.A. Balkema. citation_journal_title=Limnol. Oceanogr.; citation_title=Vertical secondary flows in submersed plant-like arrays; citation_author=H. Nepf, E. Koch; citation_volume=44; citation_issue=4; citation_publication_date=1999; citation_pages=1072-1080; citation_id=CR27