Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs

Journal of Immunology - Tập 173 Số 6 - Trang 3916-3924 - 2004
Julie K. Olson1, Stephen D. Miller2
1Department of Microbiology-Immunology and Interdepartmental Immunobiology Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
2Department of Microbiology-Immunology and Interdepartmental Immunobiology Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611

Tóm tắt

Abstract

Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler’s murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1–9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler’s murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens.

Từ khóa


Tài liệu tham khảo

Federoff, S.. 1995. Development of microglia. H. Kettenmann, and B. R. Ransom, eds. Neuroglia 162. Oxford University Press, Oxford.

Kreutzberg, G. W.. 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19:312.

Shrikant, P., E. N. Benveniste. 1996. The central nervous system as an immunocompetent organ: role of glial cells in antigen presentation. J. Immunol. 157:1819.

Kurtzke, J. F.. 1993. Epidemiologic evidence for multiple sclerosis as an infection. Clin. Microbiol. Rev. 6:382.

Aloisi, F., F. Ria, L. Adorini. 2000. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today 21:141.

Olson, J. K., A. M. Girvin, S. D. Miller. 2001. Direct activation of innate and antigen presenting functions of microglia following infection with Theiler’s virus. J. Virol. 75:9780.

Clatch, R. J., S. D. Miller, R. Metzner, M. C. Dal Canto, H. L. Lipton. 1990. Monocytes/macrophages isolated from the mouse central nervous system contain infectious Theiler’s murine encephalomyelitis virus (TMEV). Virology 176:244.

Lipton, H. L., G. Twaddle, M. L. Jelachich. 1995. The predominant virus antigen burden is present in macrophages in Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J. Virol. 69:2525.

Miller, S. D., S. J. Gerety. 1990. Immunologic aspects of Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease. Semin. Virol. 1:263.

Miller, S. D., C. L. Vanderlugt, W. S. Begolka, W. Pao, R. L. Yauch, K. L. Neville, Y. Katz-Levy, A. Carrizosa, B. S. Kim. 1997. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat. Med. 3:1133.

Medzhitov, R., C. A. Janeway, Jr. 1997. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 9:4.

Takeda, K., T. Kaisho, S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335.

Alexopoulou, L., A. C. Holt, R. Medzhitov, R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732.

Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085.

Qureshi, S. T., L. Lariviere, G. Leveque, S. Clermont, K. J. Moore, P. Gros, D. Malo. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189:615.

Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740.

Brostoff, S. W., W. Reuter, M. Hichens, E. H. Eylar. 1974. Specific cleavage of the A1 protein from myelin with cathepsin D. J. Biol. Chem. 249:559.

Tan, L. J., K. B. Gordon, J. P. Mueller, L. A. Matis, S. D. Miller. 1998. Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-γ-activated SJL/J astrocytes. J. Immunol. 160:4271.

Olson, J. K., S. S. Zamvil, S. D. Miller. 2003. Efficient technique for immortalization of murine microglial cells relevant for studies in murine models of multiple sclerosis. J. Neurosci. Methods 128:33.

Lipton, H. L., A. Friedmann. 1980. Purification of Theiler’s murine encephalomyelitis virus and analysis of the structural virion polypeptides: correlation of the polypeptide profile with virulence. J. Virol. 33:1165.

Ford, A. L., A. L. Goodsall, W. F. Hickey, J. D. Sedgwick. 1995. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol. 154:4309.

Carson, M. J., C. R. Reilly, J. G. Sutcliffe, D. Lo. 1998. Mature microglia resemble immature antigen-presenting cells. Glia 22:72.

Medzhitov, R., P. Preston-Hurlburt, C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394.

Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099.

Hemmi, H., T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo, K. Hoshino, T. Horiuchi, H. Tomizawa, K. Takeda, S. Akira. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3:196.

Muzio, M., D. Bosisio, N. Polentarutti, G. D’Amico, A. Stoppacciaro, R. Mancinelli, C. van’t Veer, G. Penton-Rol, L. P. Ruco, P. Allavena, A. Mantovani. 2000. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164:5998.

Visintin, A., A. Mazzoni, J. H. Spitzer, D. H. Wyllie, S. K. Dower, D. M. Segal. 2001. Regulation of Toll-like receptors in human monocytes and dendritic cells. J. Immunol. 166:249.

Zarember, K. A., P. J. Godowski. 2002. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J. Immunol. 168:554.

Bsibsi, M., R. Ravid, D. Gveric, J. M. van Noort. 2002. Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61:1013.

Dalpke, A. H., M. K. Schafer, M. Frey, S. Zimmermann, J. Tebbe, E. Weihe, K. Heeg. 2002. Immunostimulatory CpG-DNA activates murine microglia. J. Immunol. 168:4854.

Takeda, K., S. Akira. 2003. Toll receptors and pathogen resistance. Cell Microbiol. 5:143.

Fitzgerald, K. A., E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. T. Harte, et al 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78.

Malakhova, O., M. Malakhov, C. Hetherington, D. E. Zhang. 2002. Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3. J. Biol. Chem. 277:14703.

Yang, Y. L., L. F. Reis, J. Pavlovic, A. Aguzzi, R. Schafer, A. Kumar, B. R. Williams, M. Aguet, C. Weissmann. 1995. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14:6095.

Balachandran, S., P. C. Roberts, L. E. Brown, H. Truong, A. K. Pattnaik, D. R. Archer, G. N. Barber. 2000. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13:129.

Kurt-Jones, E. A., L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1:398.

Haynes, L. M., D. D. Moore, E. A. Kurt-Jones, R. W. Finberg, L. J. Anderson, R. A. Tripp. 2001. Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75:10730.

Rassa, J. C., J. L. Meyers, Y. Zhang, R. Kudaravalli, S. R. Ross. 2002. Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 99:2281.

Compton, T., E. A. Kurt-Jones, K. W. Boehme, J. Belko, E. Latz, D. T. Golenbock, R. W. Finberg. 2003. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77:4588.

Aloisi, F., F. Ria, G. Penna, L. Adorini. 1998. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 activation. J. Immunol. 160:4671.

Selmaj, K. W., C. S. Raine. 1988. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23:339.