Structural determinants of water permeation through aquaporin-1

Nature - Tập 407 Số 6804 - Trang 599-605 - 2000
Kazuyoshi Murata1, Kaoru Mitsuoka2, Takeshi Hirai3, Thomas Walz4, Peter Agre5, J. Bernard Heymann6, Andreas Engel6, Yoshinori Fujiyoshi2
1National Institute for Physiological Sciences, Okazaki, Japan
2Kyoto univ.
3Department of Biophysics, Faculty of Science, Kyoto University, Kyoto, Japan
4Harvard University
5¶Departments of Biological Chemistry and Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
6University of Basel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Macey, R. I. & Farmer, R. E. I. Inhibition of water and solute permeability in human red cells. Biochem. Biophys. Acta 211, 104–106 (1970).

Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634–15642 (1988).

Preston, G. M. & Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proc. Natl Acad. Sci. USA 88, 11110 –11114 (1991).

Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385– 387 (1992).

Heymann, J. B. & Engel, A. Aquaporins: Phylogeny, structure and physiology of water channels. News Physiol. Sci. 14 , 187–193 (1999).

Pomes, R. & Roux, B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J. 71, 19–39 (1996).

Wistow, G., Pisano, M. & Chepelinsky, A. Tandem sequence repeats in transmembrane channel proteins. Trends Biochem. Sci. 16, 170– 171 (1991).

Reizer, J., Reizer, A. & Saier, M. J. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstituted pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev. Biochem. Mol. Biol. 28, 235–257 (1993).

Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem. 269, 1668–1673 (1994).

Jung, J., Preston, G. M., Smith, B., Guggino, W. & Agre, P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648–14654 (1994).

van Hoek, A. N. et al. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J. Biol. Chem. 266, 16633–16635 (1991).

Smith, B. L. & Agre, P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266, 6407– 6415 (1991).

Cheng, A., van Hoek, A. N., Yeager, M., Verkman, A. S. & Mitra, A. K. Three-dimensional organization of a human water channel. Nature 387, 627 –630 (1997).

Li, H., Lee, S. & Jap, B. K. Molecular design of aquaporin-1 water channel as revealed by electron crystallography. Nature Struct. Biol. 4, 263– 265 (1997).

Walz, T., Smith, B., Agre, P. & Engel, A. The three-dimensional structure of human erythrocyte aquaporin CHIP. EMBO J. 13, 2985–2993 (1994).

Walz, T. et al. The three-dimensional structure of aquaporin-1. Nature 387, 624–627 ( 1997).

Fujiyoshi, Y. et al. Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy 38, 241–251 (1991).

Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35, 25–80 (1998).

Mitsuoka, K. et al. The structure of aquaporin-1 at 4.5 Å resolution reveals short α-helices in the center of the monomer. J. Struct. Biol. 128, 34–43 (1999).

Heymann, J. B. & Engel, A. Structural clues in the sequences of the aquaporins. J. Mol. Biol. 295 , 1039–1053 (2000).

De Groot, B. L. et al. The fold of human aquaporin 1. J. Mol. Biol. (in the press).

Russ, W. P. & Engelman, M. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919 (2000).

Walz, T., Smith, B., Zeidel, M., Engel, A. & Agre, P. Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 267, 1583–1586 (1994).

Zeidel, M. et al. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).

Zeidel, M. et al. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33, 1606–1615 (1994).

Doyle, D. A. et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

Gutierrez, A. M., Gonzales, E., Echevarria, M., Hernandez, C. S. & Whittembury, G. The proximal straight tubule (PST) basolateral cell membrane water channel: Selectivity characteristics. J. Membr. Biol. 143, 189– 197 (1995).

Yang, B, van Hoek, A. N. & Verkman, A. S. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Biochemistry 36, 7625– 7632 (1997).

Preston, G., Jung, J., Guggino, W. & Agre, P. The mercury-sensitive residue at cycteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 ( 1993).

Zhang, R., van Hoek, A. N., Biwersi, J. & Verkman, A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28, Biochemistry 32, 2938–2941 (1993).

Schulz, G. E. & Schermer, R. H. in Principles of Protein Structure (ed. Cantor, C. R.) 17–26 (Springer, New York, 1979).

Tukaguchi, H. et al. Molecular characterization of a broad selectivity neural solute channel. J. Biol. Chem. 273, 24737– 24743 (1998).

Yasui, M. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187 (1999).

Hirai, T. et al. Trehalose embedding technique for high-resolution electron crystallography: application to structural study on bacteriorhodopsin. J. Elec. Microsc. 48, 653–658 ( 1999).

Mitsuoka, K., Murata, K., Kimura, Y., Namba, K. & Fujiyoshi, Y. Examination of the Leafscan 45, a line-illuminating micro-densitometer, for its use in electron crystallography. Ultramicroscopy 68, 109–121 ( 1997).

Krivanek, O. L. & Mooney, P. E. Applications of slow-scan CCD camera in transmission electron microscopy. Ultramicroscopy 49, 95–108 ( 1993).

Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol. 116, 86–92 ( 1996).

Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: Implication on the charge distribution. J. Mol. Biol. 286, 861– 882 (1999).

Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147–178 (1986).

Collaborative Computational Project No. 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps. Acta Crystallogr. A 47, 110–119 ( 1991).

Brünger, A. T. X-PLOR Version 3.1-A System for X-ray Crystallography (Yale Univ. Press, New Haven/London, 1988).

Scheuring, S. et al. The aquaporin sidedness revisited. J. Mol. Biol. 295, 1271–1278 ( 2000).

Scheuring, S. et al. High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987 (1999).

Kraulis, P. J. MOLSCRIPT-a program to produce both detailed and schematic plots of proteins structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

Merritt, E. A. & Bacon, D. J. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

Fu, D. X. et al. Structure of a glycerol conducting channel and the basis for its selectivity. Science (in the press).