The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China

Springer Science and Business Media LLC - Tập 22 - Trang 925-937 - 2007
Chi Xu1, Maosong Liu1, Cheng Zhang1, Shuqing An1, Wen Yu1, Jing M. Chen2
1Laboratory of Forest Ecology and Global Changes, School of Life Science Nanjing University, Nanjing, P.R. China
2Department of Geography and Program in Planning, University of Toronto, Toronto, Canada

Tóm tắt

To better understand the spatio-temporal dynamics of the urban landscape of the Nanjing metropolitan region, China, we conducted a series of spatial analyses using remotely sensed data of 1979, 1988, 1998, 2000 and 2003. The results showed that the urban area as well as the growth rate increased significantly. Three urban growth types were distinguished: infilling, edge-expansion and spontaneous growth. The pattern of urban growth can be described as a ‘diffusion–coalescence’ phase transition. Although edge-expansion was the most common growth type, the spontaneous growth took a greater proportion in area and patch number than the infilling growth at the early stage, but its dominance decreased as urbanization proceeded from the diffusion phase to the coalescence phase. Hot-zones of urban growth and the distribution pattern of newly urbanized areas in different periods were studied with a buffering analysis. More than 80% of the growth area occurred within a zone of 1.4 km wide outwards from the pre-growth urban fringes. The spatial distribution of newly urbanized areas in each period showed a uniform negative exponential decline relative to the distance from the edge of the urban patches. There existed an outward wave-like shifting of urban growth hot-zones, but the distance-growth area curves varied at different stages of urban growth. While a double-peaked pattern usually occurred in the diffusion phase, a single-peaked pattern was common in the coalescence phase.

Tài liệu tham khảo

Alberti M (2005) The effects of urban patterns on ecosystem function. Intl Regional Sci Rev 28:168–192 Allen PM, Sanglier M (1979) A dynamic model of urban growth II. J Soc Biol Struct 2:269–278 Antrop M (2000) Changing patterns in the urbanized countryside of Western Europe. Landscape Ecol 15:257–270 Batty M (1997) Cellular automata and urban form: a primer. J Am Plan Assoc 63:266–274 Batty M (2002) Thinking about cities as spatial events. Environ Plan B 29:1–2 Batty M (2005) Agents, cells, and cities: new representational models for simulating multiscale urban dynamics. Environ Plan A 37:1373–1394 Batty M, Howes D (2001) Predicting temporal patterns in urban development from remote imagery. In: Donnay JP, Barnsley MJ, Longley PA (eds) Remote sensing and urban analysis. Taylor and Francis, London, UK, pp 185–204 Batty M, Longley P (1989) Urban growth and form: scaling, fractal geometry and diffusion-limited aggregation. Environ Plan A 21:1447–1472 Berling-Wolff S, Wu J (2004a) Modeling urban landscape dynamics: a case study in Phoenix, USA. Urban Ecosys 7:215–240 Berling-Wolff S, Wu J (2004b) Modeling urban landscape dynamics: a review. Ecol Res 19:119–129 Blumenfeld H (1954) The tidal wave of metropolitan expansion. J Am Inst Plan 20:3–14 Boyce RR (1966) The edge of the Metropolis: the wave theory analog Approach. Brit Columbia Geograp Ser 7:31–40 Breuste J, Feldmann H, Uhlmann O (1998) Urban ecology. Springer, Berlin, Germany Burgess EW (1925) The growth of the city: an introduction to a research project. In: Park RE, Burgess EW, McKenzie RD (eds) The city. The Chicago University Press, Chicago, USA, pp 47–62 Bürgi M, Hersperger AM, Schneeberger N (2004) Driving forces of landscape change-current and new directions. Landscape Ecol 19:857–868 Camagni R, Gibelli MC, Rigamonti P (2002) Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion. Ecol Econ 40:199–216 Clark C (1951) Urban population densities. J Roy Stat Soc 64:490–496 Couclelis H (1985) Cellular worlds: a framework for modeling micro-macro dynamics. Environ Plan A 17:585–596 Cressy PF (1939) Population succession in Chicago, 1898–1930. Am J Soc 44:59–69 Dietzel C, Herold M, Hemphill JJ, Clarke KC (2005) Spatio-temporal dynamics in California’s Central Valley: Empirical links to urban theory. Intl J Geograp Inform Sci 19:175–195 Duncan B, Sabagh G, Van Arsdol MD (1962) Patterns of city growth. Am J Soc 67:418–429 Forman RT (1995) Land mosaics: The ecology of landscapes and regions. Cambridge University Press, Cambridge, UK Franceschetti G, Marano S, Pasquino N, Pinto IM (2000) Model for urban and indoor cellular propagation using percolation theory. Phys Rev E 61:2228–2231 Grimm NB, Grove JM, Pickett STA, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems. Bioscience 50:571–584 Harris C, Ullman E (1945) The nature of cities. Annl Am Acad Polit Soc Sci 242:7–17 Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sens Environ 86:286–302 Hoover EM, Vernon R (1959) Anatomy of a metropolis. The changing distribution of people and jobs within the New York Metropolitan Region. Harvard University Press, Cambridge, USA Hoyt H (1939) The structure and growth of residential neighborhoods in American cities. Federal Housing Administration, Washington D.C., USA Jensen JR, Cowen DC (1999) Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogram Eng Remote Sens 65:611–622 Li H, Wu J (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399 Liu J, Zhan J, Deng X (2005) Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. AMBIO 34:450–455 Longley PA (2002) Geographical information systems: will developments in urban remote sensing and GIS lead to ‘better’ urban geography? Progr Human Geograp 26:231–239 Loucks OL (1994) Sustainability in urban ecosystems: beyond an object of study. In: Platt RH, Rowntree RA, Muick PC (eds) The ecological city. University of Massachusetts Press, Amherst, Massachusetts, USA, pp 49–65 Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecol 17:327–339 Makse HA, Havlin S, Stanley HE (1995) Modeling urban growth patterns. Nature 377:608–612 Masek JG, Lindsay FE, Goward SN (2000) Dynamics of urban growth in the Washington DC metropolitan area, 1973–1996, from Landsat observations. Intl J Remote Sens 21:3473–3486 McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst, Massachusetts, USA Nanjing Statistical Bureau (2004) Statistical year book of Nanjing. China Statistics Press, Beijing, China Nelson AC (1985) Demand, segmentation, and timing effects of an urban containment program on urban fringe land values. Urban Stud 22:439–443 Newling BE (1969) The spatial variation of urban population densities. Geograp Rev 59:242–252 Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annl Rev Ecol Syst 32:127–157 Portugali J (2000) Self-organization and the city. Springer, Berlin, Germany Ridd MK, Liu J (1998) A comparison of four algorithms for change detection in an urban environment. Remote Sens Environ 63:95–100 Redman CL (1999) Human dimensions of ecosystem studies. Ecosystems 2:296–298 Seto K, Fragkias M (2005) Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape Ecol 20:871–888 Seto K, Liu W (2003) Comparing ARTMAP neural network with the maximum-likelihood classifier for detecting urban change. Photogram Eng Remote Sens 69:981–990 Sohl TL (1999) Change analysis in the United Arab Emirates: An investigation of techniques. Photogram Eng Remote Sens 65:475–484 Sukopp H (1998) Urban ecology—scientific and practical aspects. In Breuste J, Felmann H, Uhlmann h (eds) Urban ecology, Springer, Berlin, pp 3–16 Tang M, Yao S (1999) On the development of urbanization in Jiangsu Province: the process and characteristics. Econ Geogr 19:117–122 Tischendorf L (2001) Can landscape indices predict ecological processes consistently? Landscape Ecol 16:235–254 White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plan A 25:1175–1199 Wilson EH, Hurd J, Civco D (2002) Development of a model to quantify and map urban growth. The American Congress on Surveying and Mapping (ACSM), the American Society for Photogrammetry and Remote Sensing (ASPRS) Annual Conference and International Federation of Surveyors XXII Congress, Washington D.C., USA Wilson AG (1976) Catastrophe theory and urban modelling: an application to modal choice. Environ Plan A 8:351–356 Winsborough HH (1962) City growth and city structure. J Region Sci 4:35–50 Wong DSS, Fotheringham AS (1990) Urban systems as examples of bounded chaos: Exploring the relationship between fractal dimension, rank-size, and rural-to-urban migration. Geografiska Annaler 72B: 89–99 Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138 Wu J, Jelinski EJ, Luck M, Tueller PT (2000) Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geograp Inform Sci 6:6–16 Wu J, David J (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Model 153:7–26 Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17:355–365 Xie Y, Yu M, Bai Y, Xing X (2006) Ecological analysis of an emerging urban landscape pattern-desakota: a case study in Suzhou, China. Landscape Ecol 21:1297–1309 Yang X, Liu Z (2005) Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Comput Environ Urban Syst 29:524–540 Yeh AGO, Li X (2001) Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogram Eng Remote Sens 67:83–90