Convergence of a two-stage Richardson process for nonlinear equations

Gene H. Golub1,2, R. Kannan1,2
1Department of Mathematics, University of Texas at Arlington, Arlington, USA
2Computer Science Department, Stanford University, Stanford, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. E. Brewster and R. Kannan,Global convergence of nonlinear successive overrelaxation via linear theory, Computing 34 (1985) 73–79.

R. S. Dembo, W. C. Eisenstat and T. Steihaug,Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982), pp. 400–408.

G. H. Golub and M. L. Overton,Convergence of a two-stage Richardson iterative procedure for solving systems of linear equations, Lecture Notes from Proc., Dundee (1981),Numerical Analysis, Springer-Verlag, 912, pp. 125–139.

G. H. Golub and R. S. Varga,Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods, Parts I and II, Numer. Math. 3 (1961), pp. 147–168.

J. E. Gunn,The numerical solution of ∇·a∇u=f by a semi-explicit alternating-direction iterative technique, Numer. Math. 6 (1964), pp. 181–184.

N. K. Nichols,On the convergence of two-stage iterative processes for solving linear equations, SIAM J. Numer. Anal. 10 (1973), pp. 460–469.

R. A. Nicolaides,On the local convergence of certain two step iterative procedures, Numer. Math. 24 (1975), pp. 95–101.

V. Pereyra,Accelerating the convergence of discretization algorithms, SIAM J. Numer. Anal. 4 (1967), pp. 508–533.