Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations
Tài liệu tham khảo
Aksoylu, 2010, Results on nonlocal boundary value problems, Numer. Funct. Anal. Optim., 31, 1301, 10.1080/01630563.2010.519136
Alali, 2010, Peridynamics and material interfaces, Journal of Elasticity, 2015, 1
Andreu-Vaillo, 2010, Nonlocal diffusion problems, 165
Askari, 2008, Peridynamics for multiscale materials modeling, J. Phys.: Conf. Ser., 125, 012078
Barles, 2014, On Neumann type problems for nonlocal equations set in a half space, Trans. Am. Math. Soc., 366, 4873, 10.1090/S0002-9947-2014-06181-3
Barles, 2014, On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations, J. Differ. Equ., 256, 1368, 10.1016/j.jde.2013.11.001
Bessa, 2014, A meshfree unification: reproducing kernel peridynamics, Comput. Mech., 53, 1251, 10.1007/s00466-013-0969-x
Bobaru, 2009, Convergence, adaptive refinement, and scaling in 1d peridynamics, Int. J. Numer. Methods Eng., 77, 852, 10.1002/nme.2439
Bourgain, 2001, Another look at sobolev spaces, 439
Burch, 2011, Classical, nonlocal, and fractional diffusion equations on bounded domains, Int. J. Multiscale Comput. Eng., 9, 661, 10.1615/IntJMultCompEng.2011002402
Chen, 2011, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods .Appl. Mech. Eng., 200, 1237, 10.1016/j.cma.2010.10.014
Cortazar, 2008, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Archive Ration. Mech. Anal., 187, 137, 10.1007/s00205-007-0062-8
Dayal, 2006, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, J. Mech. Phys. Solids, 54, 1811, 10.1016/j.jmps.2006.04.001
Dipierro, 2017, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 10.4171/RMI/942
Du, 2013, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity, J. Elast., 113.2, 193, 10.1007/s10659-012-9418-x
Du, 2013, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 23, 493, 10.1142/S0218202512500546
Du, 2012, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 667, 10.1137/110833294
Du, 2014, Nonlocal convection-diffusion volume-constrained problems and jump processes, Discret. Contin. Dyn. Syst. Ser. B (DCDS-B), 19.2, 373, 10.3934/dcdsb.2014.19.373
Du, 2015, Integral approximations to classical diffusion and smoothed particle hydrodynamics, Comput. Meth. Appl. Mech. Eng., 286, 216, 10.1016/j.cma.2014.12.019
Du, 2016, Robust a posteriori stress analysis for approximations of nonlocal models via nonlocal gradient, Comput. Methods Appl. Mech. Eng., 310, 605, 10.1016/j.cma.2016.07.023
Mengesha, 2014, The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. R. Soc. Edinb. A, 144, 161, 10.1017/S0308210512001436
Mengesha, 2014, Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elasticity, 116.1, 27, 10.1007/s10659-013-9456-z
Mengesha, 2013, Analysis of a scalar nonlocal peridynamic model with a sign changing kernel, Discret. Cont. Dyn . Sys. B., 18, 1415, 10.3934/dcdsb.2013.18.1415
T. Mengesha, Q. Du, On the variational limit of some nonlocal convex functionals of vector fields, Nonlinearity, 2015, 28, 3999–4035.
Mengesha, 2016, Characterization of function spaces of vector fields and an application in nonlinear peridynamics, Nonlinear Anal.: Theory Methods Appl., 140, 82, 10.1016/j.na.2016.02.024
Mitchell, 2015, A position-aware linear solid constitutive model for peridynamics, J. Mech. Mater. Struct., 10.5, 539, 10.2140/jomms.2015.10.539
Oterkus, 2012, Peridynamic analysis of fiber-reinforced composite materials, J. Mech. Mater. Struct., 7, 45, 10.2140/jomms.2012.7.45
Ponce, 2004, An estimate in the spirit of poincare’s inequality, J. Eur. Math. Soc., 6, 1, 10.4171/JEMS/1
Silling, 2000, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175, 10.1016/S0022-5096(99)00029-0
Silling, 2010, Peridynamic theory of solid mechanics, Adv. Appl. Mech., 44, 73, 10.1016/S0065-2156(10)44002-8
Silling, 2010, Crack nucleation in a peridynamic solid, Int. J. Fract., 162, 219, 10.1007/s10704-010-9447-z
Taylor, 2015, A two-dimensional peridynamic model for thin plates, Math. Mech. Solids, 20, 998, 10.1177/1081286513512925
Tian, 2013, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numerical Analysis, 51, 3458, 10.1137/13091631X
Tian, 2014, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52.4, 1641, 10.1137/130942644
Tian, 2017, Trace theorems for some nonlocal function spaces with heterogeneous localization, SIAM J. Math. Anal., 10.1137/16M1078811
Wang, 2012, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model, J. Comput. Phys.s, 231, 7730, 10.1016/j.jcp.2012.06.009
Zhou, 2010, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary, SIAM J. Numer. Anal., 48, 1759, 10.1137/090781267