Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma

Leukemia - Tập 31 Số 1 - Trang 83-91 - 2017
Alyssa Bouska1, W. ZHANG1, Qiang Gong2, Javeed Iqbal1, A. Scuto2, Julie M. Vose3, Maja Ludvigsen4, Kai Fu1, D D Weisenburger2, Timothy C. Greiner1, Randy D. Gascoyne5, Andreas Rosenwald6, German Ott7, Elı́as Campo8, Lisa M. Rimsza9, Jan Delabie10, Elaine S. Jaffe11, Rita M. Braziel12, Joseph M. Connors13, C-I Wu14, Louis M. Staudt15, Francesco d’Amore16, Timothy W. McKeithan2, Wing C. Chan2
1Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
2Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
3Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE, USA
4Department of Biomedicine, Aarhus University, Aarhus, Denmark
5Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
6Institute of Pathology, University of Würzburg, and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
7Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany;
8Hematopathology Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
9Department of Pathology, University of Arizona, Tucson, AZ USA
10Department of Pathology, University of Toronto, Toronto, Ontario, Canada
11Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
12Oregon Health Sciences Center, Portland, OR, USA
13Division of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
14Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
15Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
16Department of Hematology, Aarhus University Hospital, Aarhus, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kridel R, Sehn LH, Gascoyne RD . Pathogenesis of follicular lymphoma. J Clin Invest 2012; 122: 3424–3431.

Ross CW, Ouillette PD, Saddler CM, Shedden KA, Malek SN . Comprehensive analysis of copy number and allele status identifies multiple chromosome defects underlying follicular lymphoma pathogenesis. Clin Cancer Res 2007; 13: 4777–4785.

d'Amore F, Chan E, Iqbal J, Geng H, Young K, Xiao L et al. Clonal evolution in t(14;18)-positive follicular lymphoma, evidence for multiple common pathways, and frequent parallel clonal evolution. Clin Cancer Res 2008; 14: 7180–7187.

Hoglund M, Sehn L, Connors JM, Gascoyne RD, Siebert R, Sall T et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer 2004; 39: 195–204.

Horsman DE, Connors JM, Pantzar T, Gascoyne RD . Analysis of secondary chromosomal alterations in 165 cases of follicular lymphoma with t(14;18). Genes Chromosomes Cancer 2001; 30: 375–382.

Cheung KJ, Delaney A, Ben-Neriah S, Schein J, Lee T, Shah SP et al. High resolution analysis of follicular lymphoma genomes reveals somatic recurrent sites of copy-neutral loss of heterozygosity and copy number alterations that target single genes. Genes Chromosomes Cancer 2010; 49: 669–681.

Bouska A, McKeithan TW, Deffenbacher KE, Lachel C, Wright GW, Iqbal J et al. Genome-wide copy number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 2013; 123: 1681–1690.

Bodor C, Grossmann V, Popov N, Okosun J, O'Riain C, Tan K et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 2013; 122: 3165–3168.

Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 2013; 121: 1604–1611.

Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109: 3879–3884.

Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43: 830–837.

Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012; 490: 116–120.

Okosun J, Bodor C, Wang J, Araf S, Yang CY, Pan C et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 2014; 46: 176–181.

Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB et al. Genetics of follicular lymphoma transformation. Cell Rep 2014; 6: 130–140.

Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 2013; 23: 677–692.

Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2012; 44: 47–52.

Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

Yildiz M, Li H, Bernard D, Amin NA, Ouillette P, Jones S et al. Activating STAT6 mutations in follicular lymphoma. Blood 2015; 125: 668–679.

Li H, Kaminski MS, Li Y, Yildiz M, Ouillette P, Jones S et al. Mutations in linker histone genes HIST1H1 B, C, D and E, OCT2 (POU2F2), IRF8 and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 2014; 123: 1487–1498.

Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM . A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 2003; 100: 9991–9996.

Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010; 463: 88–92.

Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008; 319: 1676–1679.

Lamason RL, McCully RR, Lew SM, Pomerantz JL . Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain. Biochemistry 2010; 49: 8240–8250.

Li S, Yang X, Shao J, Shen Y . Structural insights into the assembly of CARMA1 and BCL10. PLoS One 2012; 7: e42775.

Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

Schif B, Lennerz JK, Kohler CW, Bentink S, Kreuz M, Melzner I et al. SOCS1 mutation subtypes predict divergent outcomes in diffuse large B-Cell lymphoma (DLBCL) patients. Oncotarget 2013; 4: 35–47.

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

Kwanhian W, Lenze D, Alles J, Motsch N, Barth S, Doll C et al. MicroRNA-142 is mutated in about 20% of diffuse large B-cell lymphoma. Cancer Med 2012; 1: 141–155.

Ying CY, Dominguez-Sola D, Fabi M, Lorenz IC, Hussein S, Bansal M et al. MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat Immunol 2013; 14: 1084–1092.

Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 2013; 122: 1256–1265.

Muppidi JR, Schmitz R, Green JA, Xiao W, Larsen AB, Braun SE et al. Loss of signalling via Galpha13 in germinal centre B-cell-derived lymphoma. Nature 2014; 516: 254–258.

Green JA, Suzuki K, Cho B, Willison LD, Palmer D, Allen CD et al. The sphingosine 1-phosphate receptor S1P(2) maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat Immunol 2011; 12: 672–680.

Guo S, Chan JK, Iqbal J, McKeithan T, Fu K, Meng B et al. EZH2 mutations in follicular lymphoma from different ethnic groups and associated gene expression alterations. Clin Cancer Res 2014; 20: 3078–3086.

Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

Ryan RJ, Nitta M, Borger D, Zukerberg LR, Ferry JA, Harris NL et al. EZH2 codon 641 mutations are common in BCL2-rearranged germinal center B cell lymphomas. PLoS One 2011; 6: e28585.

Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA 2008; 105: 13520–13525.

Koues OI, Kowalewski RA, Chang LW, Pyfrom SC, Schmidt JA, Luo H et al. Enhancer sequence variants and transcription-factor deregulation synergize to construct pathogenic regulatory circuits in B-cell lymphoma. Immunity 2015; 42: 186–198.

Zheng X, Liang Y, He Q, Yao R, Bao W, Bao L et al. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids. Int J Mol Sci 2014; 15: 20753–20769.

Okosun J, Wolfson RL, Wang J, Araf S, Wilkins L, Castellano BM et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat Genet 2015; 48: 183–188.

Eyre TA, Collins GP, Goldstone AH, Cwynarski K . Time now to TORC the TORC? New developments in mTOR pathway inhibition in lymphoid malignancies. Br J Haematol 2014; 166: 336–351.

Ding BB, Yu JJ, Yu RY, Mendez LM, Shaknovich R, Zhang Y et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 2008; 111: 1515–1523.

Vainchenker W, Constantinescu SN . JAK/STAT signaling in hematological malignancies. Oncogene 2013; 32: 2601–2613.

Becker S, Groner B, Muller CW . Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 1998; 394: 145–151.

Jerez A, Clemente MJ, Makishima H, Koskela H, Leblanc F, Peng Ng K et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 2012; 120: 3048–3057.

Huang X, Meng B, Iqbal J, Ding BB, Perry AM, Cao W et al. Activation of the STAT3 signaling pathway is associated with poor survival in diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol 2013; 31: 4520–4528.

Shain AH, Pollack JR . The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 2013; 8: e55119.

Zhao X, Lwin T, Zhang X, Huang A, Wang J, Marquez VE et al. Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia 2013; 27: 2341–2350.

Kuser-Abali G, Alptekin A, Cinar B . Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression. Epigenetics 2014; 9: 634–643.

Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell 2012; 22: 506–523.