Modulating electro-absorption coefficient of impurity doped quantum dots driven by noise

Sk. Md. Arif1, Anuja Ghosh1, Aindrila Bera1, Manas Ghosh2
1Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731235, West Bengal, India
2Department of Chemistry, Physical Chemistry Section, Visva-Bharati University, Santiniketan, Birbhum 731235, West Bengal, India

Tài liệu tham khảo

Karabulut, 2005, Nonlinear optical rectification in asymmetrical semiparabolic quantum wells, Solid State Commun., 135, 735, 10.1016/j.ssc.2005.06.001 Yıldırım, 2005, Nonlinear optical properties of a Pöschl–Teller quantum well, Phys. Rev. B, 72, 115340, 10.1103/PhysRevB.72.115340 Yilmaz, 2010, Third-order nonlinear absorption spectra of an impurity in a spherical quantum dot with different confining potential, Phys. Status Solidi B, 247, 371, 10.1002/pssb.200945491 Karabulut, 2007, Linear and nonlinear intersubband optical absorptions in an asymmetric rectangular quantum well, Eur. Phys. J. B, 55, 283, 10.1140/epjb/e2007-00055-1 Özmen, 2009, Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot, Opt. Commun., 282, 3999, 10.1016/j.optcom.2009.06.043 Chen, 2008, Second-order nonlinear optical susceptibilities in asymmetric coupled quantum wells, J. Phys.: Condens. Matter, 20, 225214 Şakiroğlu, 2012, Nonlinear optical rectification and the second and third harmonic generation in Pöschl–Teller quantum well under the intense laser field, Phys. Lett. A, 376, 1875, 10.1016/j.physleta.2012.04.028 Ungan, 2015, Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: effects of electric and magnetic fields, Superlattices Microstruct., 81, 26, 10.1016/j.spmi.2015.01.016 Al, 2015, Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs/Ga1−xAlxAs double inverse parabolic quantum well, Opt. Mater., 47, 1, 10.1016/j.optmat.2015.06.048 Hassanabadi, 2012, Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semi-inverse quantum wells, Solid State Commun., 152, 1761, 10.1016/j.ssc.2012.05.023 Baskoutas, 2006, Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots, Phys. Rev. B, 74, 153306, 10.1103/PhysRevB.74.153306 Karimi, 2011, Effects of external electric and magnetic fields on the linear and nonlinear intersubband optical properties of finite semi-parabolic quantum dots, Physica B, 406, 4423, 10.1016/j.physb.2011.08.105 Karabulut, 2008, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity, J. Appl. Phys., 103, 073512, 10.1063/1.2904860 Baskoutas, 2007, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, J. Phys.: Cond. Mater., 19, 395024 Kumar, 2011, Optical absorption and refractive index change of a confined exciton in a spherical quantum dot nanostructure, Eur. Phys. J. B, 84, 431, 10.1140/epjb/e2011-20466-5 Liu, 2012, Linear and nonlinear optical properties in a disk-shaped quantum dot with a parabolic potential plus a hyperbolic potential in a static magnetic field, Physica B, 407, 3676, 10.1016/j.physb.2012.05.049 Çakir, 2010, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct., 47, 556, 10.1016/j.spmi.2009.12.002 Zeng, 2013, Linear and nonlinear optical properties of ZnS/ZnO core shell quantum dots: effect of shell thickness, impurity, and dielectric environment, J. Appl. Phys., 114, 023510, 10.1063/1.4813094 Khordad, 2015, Impurity position effect on optical properties of various quantum dots, Physica E, 66, 107, 10.1016/j.physe.2014.09.021 Kirak, 2011, The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot, J. Appl. Phys., 109, 094309, 10.1063/1.3582137 Rezaei, 2011, Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot, Curr. Appl. Phys., 11, 176, 10.1016/j.cap.2010.07.002 Rezaei, 2010, Intersubband optical absorption coefficient changes and refractive index changes in a two-dimensional quantum pseudodot system, Superlattices Microstruct., 48, 450, 10.1016/j.spmi.2010.08.009 Zuhair, 2013, Effect of capping layer of GaAlAs on the electronic and optical properties of GaAs spherical layer quantum dot, Physica E, 47, 275, 10.1016/j.physe.2012.10.024 Zuhair, 2012, Hydrostatic pressure and electric-field effects on the electronic and optical properties of InAs spherical layer quantum dot, Physica E, 46, 232, 10.1016/j.physe.2012.09.017 Ghazi, 2014, Linear and nonlinear intra-conduction band optical absorption in (In, Ga)N/GaN spherical QD under hydrostatic pressure, Opt. Commun., 331, 73, 10.1016/j.optcom.2014.05.055 Ghazi, 2014, Pressure-dependent of linear and nonlinear optical properties of (In, Ga)N/GaN spherical QD, Superlattices Microstruct., 71, 211, 10.1016/j.spmi.2014.03.046 Duque, 2006, Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots, J. Phys.: Condensed Matters, 18, 1877 Pacheco, 2001, Optical response of a quantum dot superlattice under electric and magnetic fields, Phys. Rev. B, 64, 033406, 10.1103/PhysRevB.64.033406 Mahrsia, 2016, Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature, J. Alloys Compounds, 671, 200, 10.1016/j.jallcom.2016.02.106 Bouzaïene, 2013, Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot, J. Lumin., 135, 271, 10.1016/j.jlumin.2012.09.032 Barseghyan, 2014, Intense laser field effects on the linear and nonlinear optical properties in a semiconductor quantum wire with triangle cross section, Superlattices Microstruct., 66, 10, 10.1016/j.spmi.2013.11.023 Baghramyan, 2013, Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: effects of hydrostatic pressure and aluminium concentration, J. Lumin., 134, 594, 10.1016/j.jlumin.2012.07.024 Hakimyfard, 2009, Simultaneous effects of pressure and magnetic field on intersubband optical transitions in Pöschl–Teller quantum well, Physica E, 41, 1596, 10.1016/j.physe.2009.05.008 Bautista, 2013, Crossover from strong to weak exciton confinement and third-harmonic generation on one-dimensional quantum dots, Photon. Nanostruct., 11, 8, 10.1016/j.photonics.2012.06.010 Evangelou, 2011, Pulsed four-wave mixing in intersubband transitions of a symmetric semiconductor quantum well, Photon. Nanostruct., 9, 168, 10.1016/j.photonics.2010.09.004 Al-Khursan, 2009, Third-order non-linear susceptibility in a three-level quantum dot system, Photon. Nanostruct., 7, 153, 10.1016/j.photonics.2009.06.004 del Coso, 2004, Relation between nonlinear refractive index and third-order susceptibility in absorbing media, J. Opt. Soc. Am. B, 21, 640, 10.1364/JOSAB.21.000640 Bahari, 2012, Quadratic electro-optic effect and electro-absorption process in CdSe − ZnS − CdSe structure, Physica E, 44, 782, 10.1016/j.physe.2011.11.028 Asadpour, 2011, Enhancement of Kerr nonlinearity at long wavelength in a quantum dot nanostructure, Physica E, 43, 1759, 10.1016/j.physe.2011.04.024 Asadpour, 2011, Enhanced Kerr nonlinearity in a tunnel-coupled quantum wells, Physica E, 44, 464, 10.1016/j.physe.2011.09.023 Al-Nashy, 2014, Kerr effect in quantum dot structure, Optik, 125, 4873, 10.1016/j.ijleo.2014.04.038 Ajiki, 2003, Enhancement of the Kerr effect for a quantum dot in a cavity, Superlattices Microstruct., 34, 213, 10.1016/j.spmi.2004.03.030 Al-Nashy, 2016, Kerr nonlinearity enhancement by double tunneling from quantum dot nanostructure, Results Phys., 6, 189, 10.1016/j.rinp.2016.04.003 Kouhi, 2016, Electric field effect on the quadratic electro optic effects and electro absorption process in GaN/AlGaN spherical quantum dot, Optik, 127, 3379, 10.1016/j.ijleo.2015.12.115 Cristea, 2013, Electric field effect on the third-order nonlinear optical susceptibility in inverted core-shell nanodots with dielectric confinement, J. Lumin., 143, 592, 10.1016/j.jlumin.2013.06.022 Feng, 2006, Third-order nonlinear optical susceptibilities associated with intersubband transitions in CdSe/ZnS core-shell quantum dots, Physica B, 383, 207, 10.1016/j.physb.2006.03.012 Zhang, 2006, Well width-dependent third-order optical nonlinearities of a Zns/CdSe cylindrical quantum dot quantum well, Physica E, 33, 120, 10.1016/j.physe.2005.11.017 Wang, 2006, Quadratic electro-optic effects and electro-absorption process in InGaN/GaN cylinder quantum dots, Microelectron. J., 37, 847, 10.1016/j.mejo.2006.03.007 Kouhi, 2014, Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot, Nanoscale Res. Lett., 9, 131, 10.1186/1556-276X-9-131 Xie, 2007, Characteristics of quadratic electro-optic effects and electro-absorption process in CdSe parabolic quantum dots, Microelectron. J., 38, 787, 10.1016/j.mejo.2007.04.007 Vahedi, 2013, Third order susceptibility enhancement using GaN based composite nanoparticle, Optik, 124, 6669, 10.1016/j.ijleo.2013.05.106 Rajashabala, 2008, Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well, Superlattices Microstruct., 43, 247, 10.1016/j.spmi.2007.11.002 Rajashabala, 2006, Effective masses for donor binding energies in quantum well systems, Mod. Phys. Lett. B, 20, 1529, 10.1142/S0217984906011633 Peter, 2008, Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot, Physica E, 40, 2747, 10.1016/j.physe.2007.12.025 Khordad, 2010, Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge quantum wire, Physica E, 42, 1503, 10.1016/j.physe.2009.12.006 Khordad, 2011, Effect of position-dependent effective mass on linear and nonlinear optical properties of a cubic quantum dot, Physica B, 406, 3911, 10.1016/j.physb.2011.07.022 Qi, 1998, Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well, Phys. Rev. B, 58, 10578, 10.1103/PhysRevB.58.10578 Peter, 2009, The effect of position-dependent effective mass of hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots in a strong magnetic field, Int. J. Mod. Phys. B, 26, 5109, 10.1142/S0217979209053394 Li, 2000, The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well, J. Appl. Phys., 88, 2588, 10.1063/1.1286244 Naimi, 2015, Effect of position-dependent effective mass on optical properties of spherical nanostructures, Opt. Quant. Electron., 47, 2947, 10.1007/s11082-015-0183-5 Köksal, 2009, Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires, Physica B, 404, 3850, 10.1016/j.physb.2009.07.103 Deng, 1994, Impurity states in a spherical GaAs. Ga1−xAlxAs quantum dot: effects of the spatial variation of dielectric screening, Phys. Rev. B, 50, 5736, 10.1103/PhysRevB.50.5736 Xie, 2013, Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots, Superlattices Microstruct., 53, 49, 10.1016/j.spmi.2012.09.009 Xie, 2012, Optical anisotropy of a donor in ellipsoidal quantum dots, Physica B, 407, 4588, 10.1016/j.physb.2012.08.023 Safarpour, 2014, Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire, Physica E, 59, 124, 10.1016/j.physe.2014.01.007 Safarpour, 2014, Anisotropy effect on the linear and nonlinear optical properties of a laser dressed donor impurity in a GaAs/GaAlAs nanowire superlattice, Superlattices Microstruct., 75, 936, 10.1016/j.spmi.2014.09.018 Lu, 2011, Combined effects of hydrostatic pressure and temperature on nonlinear properties of an exciton in a spherical quantum dot under the applied electric field, Physica B, 406, 3735, 10.1016/j.physb.2011.06.081