Active learning approach to label network traffic datasets
Tài liệu tham khảo
Catania, 2012, Automatic network intrusion detection: current techniques and open issues, Comput Electr Eng, 7, 1063
Bhuyan, 2015, Towards generating real-life datasets for network intrusion detection, Int J Netw Secur, 17, 683
Sommer, 2010, Outside the closed world: on using machine learning for network intrusion detection, 305
Sebastian G. Stratosphere research laboratorys. 2015. https://stratosphereips.org/, [Online; accessed Jun-2018].
University of California I. Knowledge discovery in databases DARPA archive. 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html/ [Online; accessed September-2016].
DEFCON Hacking Conference - capture the flag archive. 2011. https://www.defcon.org/html/links/dc-ctf.html, [Online; accessed April-2018].
Center for applied internet data analysis. 1997. University of California, San Diego, http://www.caida.org/ [Online; accessed April-2019].
Mukkavilli S.K., Shetty S., Hong L. Generation of Labelled Datasets to Quantify the Impact of Security Threats to Cloud Data Centers 2016; (April): 172–184. http://www.scirp.org/journal/PaperInformation.aspx?paperID=65482. doi:10.4236/jis.2016.73013.
Görnitz N., Kloft M., Rieck K., Brefeld U.. Active learning for network intrusion detection 2009. doi:10.1145/1654988.1655002.
Aparicio-Navarro, 2014, Automatic dataset labelling and feature selection for intrusion detection systems, Proceedings the IEEE military communications conference MILCOM, 46
Beaugnon, 2017, ILAB: an interactive labelling strategy for intrusion detection, 120, 10.1007/978-3-319-66332-6_6
Soule, 2008, Webclass: adding rigor to manual labeling of traffic anomalies, Comput Commun Rev, 38, 35, 10.1145/1341431.1341437
Pius Owoh, 2018, Automatic annotation of unlabeled data from smartphone-based motion and location sensors, Sensors (Switzerland), 18, 10.3390/s18072134
Lemay, 2016, Providing SCADA network data sets for intrusion detection research
Sperotto, 2009, A labeled data set for flow-based intrusion detection, 5843 LNCS, 39
Pelleg, 2004, Active learning for anomaly and rare-category detection, Adv Neural Inf Process Syst, 18, 1073
Guerra, 2017, Visual exploration of network hostile behavior, 51
Shneiderman, 2003, The eyes have it: A Task by data type taxonomy for information visualizations, Craft Inf Vis, 364
Kodinariya, 2013, Review on determining number of cluster in K-Means clustering, Int J Adv Res Comput Sci Manag Stud, 1, 90
Malware capture facility project. 2013. Czech Technical University, https://mcfp.weebly.com/ [Online; accessed May-2019].
Lewis, 1994, A sequential algorithm for training text classifiers, 3
Staheli, 2014, Visualization evaluation for cyber security, 49
Garcia, 2014
The CTU-13 dataset. 2011. Stratosphere Project, https://www.stratosphereips.org/datasets-ctu13/ [Online; accessed Jun-2018].
The CTU-19 dataset, botnet kelihos tdptu02.exe. 2013a. https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-3/ [Online; accessed Jun-2018].
The CTU-19 Dataset, Botnet 39UvZmv.exe. 2013b. Stratosphere Project, https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-1/ [Online; accessed Jun-2018].
The CTU-19 Dataset, Normal Datasets. 2013c. Stratosphere Project, https://www.stratosphereips.org/datasets-normal/ [Online; accessed Jun-2018].
Sáez, 2016, Evaluating the classifier behavior with noisy data considering performance and robustness: the equalized loss of accuracy measure, Neurocomputing, 176, 26, 10.1016/j.neucom.2014.11.086
Ruiz-Gazeb, 2007, Storms prediction: Logistic regression vs random forest for unbalanced data, Case Stud Bus Ind Gov Stat, 1, 91
Liu, 2013, Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and chinese vinegar, Sens Actuators B Chem, 177, 970, 10.1016/j.snb.2012.11.071
Breiman, 2001, Random forests, Mach Learn, 45, 5, 10.1023/A:1010933404324
Kuncheva, 2014, 10.1002/9781118914564
Avazpour I., Pitakrat T., Grunske L., Grundy J. Recommendation systems in software engineering 2014. doi:10.1007/978-3-642-45135-5.
Collins, 2002, Logistic regression, AdaBoost and Bregman distances, Mach Learn, 48, 253, 10.1023/A:1013912006537