Simultaneous PET–MRI in oncology: a solution looking for a problem?

Magnetic Resonance Imaging - Tập 30 - Trang 1342-1356 - 2012
Thomas E. Yankeelov1,2,3,4,5, Todd E. Peterson1,2,3, Richard G. Abramson1,2, David Garcia-Izquierdo6,7, Lori R. Arlinghaus1,2, Xia Li1,2, Nkiruka C. Atuegwu1,2, Ciprian Catana8, H. Charles Manning1,2,4,9, Zahi A. Fayad6,7,10, John C. Gore1,2,3,4,11
1Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
2Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
3Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 USA
4Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 USA
5Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
6Translational and Molecular Imaging Institute, Mt. Sinai Medical Center, New York, NY 10029, USA
7Department of Radiology, Mt. Sinai Medical Center, New York, NY 10029, USA
8Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
9Department of Neurosurgery, Vanderbilt University, Nashville, TN 37232, USA
10Department of Cardiology, Mt. Sinai Medical Center, New York, NY 10029, USA
11Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA

Tài liệu tham khảo

Afaq, 2011, Imaging assessment of tumor response: past, present and future, Future Oncol, 7, 669, 10.2217/fon.11.38 Schnall, 2006, Primer on imaging technologies for cancer, J Clin Oncol, 24, 3225, 10.1200/JCO.2006.06.5656 Levin, 2005, Primer on molecular imaging technology, Eur J Nucl Med Mol Imaging, 32, S325, 10.1007/s00259-005-1973-y Webb, 1988 Correia, 1990, Editorial: registration of nuclear medicine images, J Nucl Med, 31, 1227 Hasegawa, 1990, Description of a simultaneous emission-transmission CT system. In: Medical imaging IV: image formation, Proc SPIE, 1231, 50, 10.1117/12.18783 Hasegawa, 2002, Dual-modality imaging of function and physiology, Acad Radiol, 9, 1305, 10.1016/S1076-6332(03)80564-0 Beyer, 2000, A combined PET/CT scanner for clinical oncology, J Nucl Med, 41, 1369 Horger, 2006, The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease, Semin Nucl Med, 36, 286, 10.1053/j.semnuclmed.2006.05.001 Even-Sapir, 2001, The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms, J Nucl Med, 42, 998 Pfannenberg, 2003, Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms, Eur J Nucl Med Mol Imaging, 30, 835, 10.1007/s00259-003-1160-y von Schulthess, 2006, Integrated PET/CT: current applications and future directions, Radiology, 238, 405, 10.1148/radiol.2382041977 Catana, 2008, Simultaneous in vivo positron emission tomography and magnetic resonance imaging, Proc Natl Acad Sci USA, 105, 3705, 10.1073/pnas.0711622105 Judenhofer, 2008, Simultaneous PET–MRI: a new approach for functional and morphological imaging, Nat Med, 14, 459, 10.1038/nm1700 Mawlawi, 2006, PET/CT imaging techniques, considerations, and artifacts, J Thorac Imaging, 21, 99, 10.1097/00005382-200605000-00002 Osman, 2003, Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET–CT, Eur J Nucl Med Mol Imaging, 30, 603, 10.1007/s00259-002-1024-x Goerres, 2002, PET–CT image coregistration in the thorax: influence of respiration, Eur J Nucl Med Mol Imaging, 29, 351, 10.1007/s00259-001-0710-4 Beyer, 2003, Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology, Eur J Nucl Med Mol Imaging, 30, 588, 10.1007/s00259-002-1097-6 Shao, 1997, Simultaneous PET and MR imaging, Phys Med Biol, 42, 1965, 10.1088/0031-9155/42/10/010 Shao, 1997, Development of a PET detector system compatible with MRI/NMR systems, IEEE Trans Nucl Sci, 44, 1167, 10.1109/23.596982 Slates, 1999, A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner, Phys Med Biol, 44, 2015, 10.1088/0031-9155/44/8/312 Pichler, 2008, Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging?, Semin Nucl Med, 38, 199, 10.1053/j.semnuclmed.2008.02.001 Pichler, 2008, Latest advances in molecular imaging instrumentation, J Nucl Med, 49, 5S, 10.2967/jnumed.108.045880 Lucas, 2006, Development of a combined microPET–MR system, Technol Cancer Res Treat, 5, 337, 10.1177/153303460600500405 Pichler, 2006, Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI, J Nucl Med, 47, 639 Maramraju, 2011, Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI, Phys Med Biol, 56, 2459, 10.1088/0031-9155/56/8/009 Boss, 2010, Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT, J Nucl Med, 51, 1198, 10.2967/jnumed.110.074773 Boss, 2011, Feasibility of simultaneous PET/MR imaging in the head and upper neck area, Eur Radiol, 21, 1439, 10.1007/s00330-011-2072-z Cherry, 2004, PET: physics, instrumentation, and scanners, 1 Bergström, 1982, Determination of object contour from projections for attenuation correction in cranial positron emission tomography, J Comput Assist Tomogr, 6, 365, 10.1097/00004728-198204000-00022 Bailey, 1998, Transmission scanning in emission tomography, Eur J Nucl Med, 25, 774, 10.1007/s002590050282 Visvikis, 2003, CT-based attenuation correction in the calculation of semi-quantitative indices of [18F]FDG uptake in PET, Eur J Nucl Med Mol Imaging, 30, 344, 10.1007/s00259-002-1070-4 Westerterp, 2007, Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters, Eur J Nucl Med Mol Imaging, 34, 392, 10.1007/s00259-006-0224-1 Keereman, 2011, The effect of errors in segmented attenuation maps on PET quantification, Med Phys, 38, 6010, 10.1118/1.3651640 Catana, 2010, Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype, J Nucl Med, 51, 1431, 10.2967/jnumed.109.069112 Marshall, 2011, A comparison of MR-based attenuation correction in PET versus SPECT, Phys Med Biol, 56, 4613, 10.1088/0031-9155/56/14/024 Malone, 2011, Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches, J Nucl Med, 52, 1142, 10.2967/jnumed.110.085076 Hofmann, 2011, MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods, J Nucl Med, 52, 1392, 10.2967/jnumed.110.078949 Zaidi, 2003, Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography, Med Phys, 30, 937, 10.1118/1.1569270 Salomon, 2011, Simultaneous reconstruction of activity and attenuation for PET/MR, IEEE Trans Med Imaging, 30, 804, 10.1109/TMI.2010.2095464 Robson, 2003, Magnetic resonance: an introduction to ultrashort TE (UTE) imaging, J Comput Assist Tomogr, 27, 825, 10.1097/00004728-200311000-00001 Dixon, 1984, Simple proton spectroscopic imaging, Radiology, 153, 189, 10.1148/radiology.153.1.6089263 Seo, 2011, Feasibility of whole-body MRI for detecting metastatic myxoid liposarcoma: a case series, Orthopedics, 34, e748, 10.3928/01477447-20110922-15 Costelloe, 2012, Fast Dixon whole-body MRI for detecting distant cancer metastasis: a preliminary clinical study, J Magn Reson Imaging, 35, 399, 10.1002/jmri.22815 Manenti, 2011, Role of combined DWIBS/3D-CE-T1w whole-body MRI in tumor staging: comparison with PET–CT, Eur J Radiol MacDonald, 2011, Effects of MR surface coils on PET quantification, Med Phys, 38, 2948, 10.1118/1.3583697 Delso, 2010, Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner, Phys Med Biol, 55, 4361, 10.1088/0031-9155/55/15/011 Tellmann, 2011, The effect of MR surface coils on PET quantification in whole-body PET/MR: results from a pseudo-PET/MR phantom study, Med Phys, 38, 2795, 10.1118/1.3582699 Qi, 2006, Iterative reconstruction techniques in emission computed tomography, Phys Med Biol, 51, R541, 10.1088/0031-9155/51/15/R01 Leahy, 1991, Incorporation of anatomical MR data for improved functional imaging with PET, Lect Notes Comput Sci, 511, 105, 10.1007/BFb0033746 Bowsher, 1996, Bayesian reconstruction and use of anatomical a priori information for emission tomography, IEEE Trans Med Imaging, 15, 673, 10.1109/42.538945 Wang, 2003, Incorporation of correlated MR images in MAP reconstruction of PET images, J Nucl Med, 44, 278 Vriens, 2010, Methodological considerations in quantification of oncological FDG PET studies, Eur J Nucl Med Mol Imaging, 37, 1408, 10.1007/s00259-009-1306-7 Tsoumpas, 2010, Simultaneous PET–MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET, Ann Nucl Med, 24, 745, 10.1007/s12149-010-0418-2 Picard, 1997, Motion correction of PET images using multiple acquisition frames, IEEE Trans Med Imaging, 16, 137, 10.1109/42.563659 Haacke, 1999 King, 2012, Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator, Med Image Anal, 16, 252, 10.1016/j.media.2011.08.003 Guérin, 2011, Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging, Med Phys, 38, 3025, 10.1118/1.3589136 Gambhir, 2004, Quantitative assay development for PET, 125 Adam, 2001, Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors, J Nucl Med, 42, 1821 Zaidi, 2011, Design and performance evaluation of a whole-body Ingenuity TF PET–MRI system, Phys Med Biol, 56, 3091, 10.1088/0031-9155/56/10/013 Hoffman, 1979, Quantitation in positron emission computed tomography: 1. Effect of object size, J Comput Assist Tomogr, 3, 299, 10.1097/00004728-197906000-00001 Mazziotta, 1981, Quantitation in positron emission computed tomography: 5. Physical–anatomical effects, J Comput Assist Tomogr, 5, 734, 10.1097/00004728-198110000-00029 Greuter, 2003, Measurement of 18F-FDG concentrations in blood samples: comparison of direct calibration and standard solution methods, J Nucl Med Technol, 31, 206 de Geus-Oei, 2006, Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies, J Nucl Med, 47, 945 Muller-Gartner, 1992, Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects, J Cereb Blood Flow Metab, 12, 571, 10.1038/jcbfm.1992.81 Rousset, 1998, Correction for partial volume effects in PET: principle and validation, J Nucl Med, 39, 904 Boussion, 2006, A multiresolution image based approach for correction of partial volume effects in emission tomography, Phys Med Biol, 51, 1857, 10.1088/0031-9155/51/7/016 Meltzer, 1999, Comparative evaluation of MR-based partial volume correction schemes for PET, J Nucl Med, 40, 2053 Shidahara, 2009, Functional and structural synergy for resolution recovery and partial volume correction in brain PET, Neuroimage, 44, 340, 10.1016/j.neuroimage.2008.09.012 Torres Martin de Rosales, 2011, Synthesis of 64Cu(II)-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET–MRI agent, Angew Chem Int Ed Engl, 50, 5509, 10.1002/anie.201007894 Glaus, 2010, In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent, Bioconjug Chem, 21, 715, 10.1021/bc900511j Choi, 2008, Hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging, Angew Chem Int Ed, 47, 6259, 10.1002/anie.200801369 Lee, 2008, PET/MRI dual-modality tumor imaging using arginine–glycine–aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles, Nucl Med, 49, 1371, 10.2967/jnumed.108.051243 Gaertner, 2010, Molecular imaging of αvβ3 expression in cancer patients, Q J Nucl Med Mol Imaging, 54, 309 Frullano, 2010, Bimodal MR–PET agent for quantitative pH imaging, Angewandte Chemie, 122, 2432, 10.1002/ange.201000075 Vees, 2009, Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma, Eur J Nucl Med Mol Imaging, 36, 182, 10.1007/s00259-008-0943-6 Thorwarth, 2011, Simultaneous 68Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience, Int J Radiat Oncol Biol Phys, 81, 277, 10.1016/j.ijrobp.2010.10.078 Huang, 2011, A comparative study of fused FDG PET/MRI, PET/CT, MRI, and CT imaging for assessing surrounding tissue invasion of advanced buccal squamous cell carcinoma, Clin Nucl Med, 36, 518, 10.1097/RLU.0b013e318217566f Tatsumi, 2011, 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT, Int J Clin Oncol, 16, 408, 10.1007/s10147-011-0202-x Moy, 2010, Role of fusion of prone FDG-PET and magnetic resonance imaging of the breasts in the evaluation of breast cancer, Breast J, 16, 369 Jansen, 2010, Noninvasive assessment of tumor microenvironment using dynamic contrast-enhanced magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography imaging in neck nodal metastases, Int J Radiat Oncol Biol Phys, 77, 1403, 10.1016/j.ijrobp.2009.07.009 Cho, 2009, Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia, Neoplasia, 11, 247, 10.1593/neo.81360 Zhang, 2011, Multimodality imaging of tumor response to Doxil, Theranostics., 1, 302, 10.7150/thno/v01p0302 Atuegwu, 2010, The integration of quantitative multi-modality imaging data into mathematical models of tumors, Phys Med Biol, 55, 2429, 10.1088/0031-9155/55/9/001 Hricak, 1984, Body MRI: alleviation of claustrophobia by prone positioning, Radiology, 152, 819, 10.1148/radiology.152.3.6463267 Quirk, 1989, Evaluation of three psychologic interventions to reduce anxiety during MR imaging, Radiology, 173, 759, 10.1148/radiology.173.3.2682775 Quirk, 1989, Anxiety in patients undergoing MR imaging, Radiology, 170, 463, 10.1148/radiology.170.2.2911670 Flaherty, 1989, Emotional distress during magnetic resonance imaging, N Engl J Med, 320, 467, 10.1056/NEJM198902163200716 Meléndez, 1993, Anxiety-related reactions associated with magnetic resonance imaging examinations, JAMA, 270, 745, 10.1001/jama.1993.03510060091039 Katz, 1994, Anxiety and its determinants in patients undergoing magnetic resonance imaging, J Behav Ther Exp Psychiatry, 25, 131, 10.1016/0005-7916(94)90005-1 Murphy, 1997, Adult claustrophobia, anxiety and sedation in MRI, Magn Reson Imaging, 15, 51, 10.1016/S0730-725X(96)00351-7 Hamblen, 2003, Clinical 18F-FDG oncology patient preparation techniques, J Nucl Med Technol, 31, 3 Mawlawi, 2008, Factors affecting quantification in PET/CT imaging, Curr Med Imaging Rev, 4, 34, 10.2174/157340508783502778 Cohade, 2003, Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT, J Nucl Med, 44, 170 Yeung, 2003, Patterns of [18]F FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET, J Nucl Med, 44, 1789 McQuattie, 2008, Pediatric PET/CT imaging: tips and techniques, J Nucl Med Technol, 36, 171, 10.2967/jnmt.108.051995 Veitch, 2000, Pediatric nuclear medicine, part I: developmental cues, J Nucl Med Technol, 28, 3 Eisenhauer, 2009, New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1), Eur J Cancer, 45, 228, 10.1016/j.ejca.2008.10.026