Computational modeling of laser welding of Cu-Ni dissimilar couple

Metallurgical and Materials Transactions B - Tập 35 - Trang 339-350 - 2004
Gandham Phanikumar1, Kamanio Chattopadhyay1, Pradip Dutta2
1Department of Metallurgy, the Indian Institute of Science, Bangalore, India
2Department of Mechanical Engineering, the Indian Institute of Science, Bangalore, India

Tóm tắt

A three-dimensional transient model to solve heat transfer, fluid flow, and species conservation during laser welding of dissimilar metals is presented. The model is based on a control volume formulation with an enthalpy-porosity technique to handle phase change and a mixture model to simulate mixing of molten metals. Weld pool development, solidified weld pool shape, and composition profiles are presented for both stationary as well as continuous laser welding in conduction mode. Salient features of a dissimilar Cu-Ni weld are summarized and thermal transport arguments are employed to successfully explain the observations. It is found that the weld pool shape becomes asymmetric even when the heat source is symmetrically applied on the two metals forming the couple. It is also observed that convection plays an important role in the development of weld pool shape and composition profiles. As the weld pool develops, the side melting first (nickel) is found to experience more convection and better mixing. Results from the case studies of computation are compared with corresponding experimental observations, showing good qualitative agreement between the two.

Tài liệu tham khảo

J. Mazumder: J. Met., 1982, July, pp. 16–24. J. Mazumder: Opt. Eng., 1991, vol. 30, pp. 1208–19. T. DebRoy and S.A. David: Rev. Modern Phys., 1995, vol. 67, pp. 85–112. S.A. David and J.M. Vitek: Int. Mater. Rev., 1989, vol. 34, pp. 213–45. C. Chan, J. Mazumder, and M.M. Chen: Metall. Trans. A, 1984, vol. 15A, pp. 2175–2184. C.L. Chan, J. Mazumder, and M.M. Chen: Mater. Sci. Technol., 1987, vol. 3, pp. 306–10. T. Zacharia, A.H. Eraslan, and D.K. Aidun: Welding J., 1988, vol. 67, pp. 53s-62s. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Welding Res. Suppl., 1989, Dec., pp. 499s–509s. Biswajit Basu and A.W. Date: Int. J. Heat Mass Transfer, 1990, vol. 33, pp. 1149–63. Biswajit Basu and A.W. Date: Int. J. Heat Transfer, 1990, vol. 33, pp. 1165–75. Pradip Dutta, Yogendra Joshi, and Rama Janaswamy: Num. Heat Transfer, 1995, vol. 27, pp. 499–518. S. Kou and Y.H. Wang: Welding Res. Suppl., 1986, Mar. pp. 64s–70s. A. Paul and T. DebRoy: Metall. Trans. B, 1988, vol. 19B, pp. 851–58. Natarajan Ramanan and Seppo A. Korpela: Metall. Trans. A, 1990, vol. 21A, pp. 45–57. A.J. Russo, R.L. Akau, and J.L. Jellison: Welding Res. Suppl., 1990, Jan., pp. 23s–28s. Randall L. Zehr: Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1991. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Welding Res. Suppl., 1989, Dec., pp. 510s–19s. T.A. Palmer and T. DebRoy: in Mathematical Modelling of Weld Phenomena 5, H. Cerjak, ed., Institute of Materials, London, 2001, pp. 95–122. Z. Sun and J.C. Ion: J. Mater. Sci., 1995, vol. 30, pp. 4205–14. S. Kumar, G. Phanikumar, P. Dutta, and K. Chattopadhyay: J. Mater. Sci., 2002, vol. 37, pp. 2345–49. W. Duley: Laser Welding, John Wiley & Sons Inc., New York, NY, 1999. G. Phanikumar, R. Pardeshi, K. Chattopadhyay, P. Dutta, and J. Mazumder: Trends in Welding Research, Proc. 5th Int. Conf., J.M. Vitek, S.A. David, J.A. Johnson, H.B. Smartt, and T. DebRoy, eds., ASM INTERNATIONAL, Materials Park, OH, 1998, pp. 461–66. G. Phanikumar, K. Chattopadhyay, and P. Dutta: Int. J. Num. Methods Heat Fluid Flow, 2001, vol. 11, pp. 156–71. F.K. Chung and P.S. Wei: J. Heat Transfer—Trans. ASME, 1999, vol. 121, pp. 451–61. P.S. Wei and F.K. Chung: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1387–1403. P.S. Wei, Y.K. Kuo, and J.S. Ku: J. Heat Transfer—Trans. ASME, 2000, vol. 122, pp. 626–31. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, 2nd ed., Hemisphere Publications, New York, NY, 1980. E.A. Brandes: Smithells Metals Reference Book, 6th ed., Butterworth & Co Publications Ltd., London, 1983. A.D. Brent, V.R. Voller, and K.J. Reid: Num. Heat Transfer, 1988, vol. 13, pp. 297–318. R.T.C. Choo and J. Szekely: Welding J., 1994, vol. 73, pp. 25s-31s. K. Hong, D.C. Weckman, and A.B. Strong: Can. Metall. Q., 1998, vol. 37, pp. 293–303. K. Hong, D.C. Weckman, A.B. Strong, and W. Zheng: Sci. Technol. Welding Joining, 2002, vol. 7 (3), pp. 125–36. D.C. Weckman: in Trends in Welding Research, J.M. Vitek, S.A. David, J.A. Johnson, H.S. Smartt, and T. DebRoy, eds., ASM INTERNATIONAL, Materials Park, OH, 1999, p. 3. Z. Yang and T. DebRoy: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 483–93. Z. Yang, J.W. Elmer, J. Wong, and T. DebRoy: Welding J., 2000, vol. 79, pp. 97s-112s. H. Zhao and T. DebRoy, Metall. Mater. Trans. B, 2001, vol. 32B, pp. 163–72. J. Jaidi, K.S.S. Murthy, and P. Dutta: Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 2002, p. 147. P. Mohanraj, S. Sarkar, S. Chakraborty, G. Phanikumar, P. Dutta, and K. Chattopadhyay: Int. J. Heat Fluid Flow, 2002, vol. 23, pp. 298–307. J. Seretsky and E.R. Ryba: Welding Res. Suppl., 1976, July, pp. 208s–211s. B. Majumdar, R. Galun, A. Weisheit, and B.L. Mordike: J. Mater. Sci., 1997, vol. 32, pp. 6191–200. Gandham Phanikumar: Ph.D. Thesis, Indian Institute of Science, Bangalore, 2002.