Synthesis of murunskite single crystals: A bridge between cuprates and pnictides

Applied Materials Today - Tập 24 - Trang 101096 - 2021
Davor Tolj1, Trpimir Ivšić2, Ivica Živković1, Konstantin Semeniuk2, Edoardo Martino2, Ana Akrap3, Priyanka Reddy4, Benjamin Klebel-Knobloch5, Ivor Lončarić6, László Forró2, Neven Barišić4,5, Henrik M. Ronnow1, Denis K. Sunko4
1Laboratory for Quantum Magnetism, EPFL, 1015 Lausanne, Switzerland
2Laboratory of Physics of Complex Matter, EPFL, 1015 Lausanne, Switzerland
3Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
4Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
5Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
6Department of Theoretical Physics, Ruđer Bošković Institute, 10000 Zagreb, Croatia

Tài liệu tham khảo

Bednorz, 1986, Possible high Tc superconductivity in the Ba−La−Cu−O system, Zeitschrift für Phys. B Condens. Matter, 64, 189, 10.1007/BF01303701 Kamihara, 2006, Iron-Based Layered Superconductor: LaOFeP, J. Am. Chem. Soc., 128, 10012, 10.1021/ja063355c Fujimori, 1987, Spectroscopic evidence for strongly correlated electronic states in La-Sr-Cu and Y-Ba-Cu oxides, Phys. Rev. B, 35, 8814, 10.1103/PhysRevB.35.8814 Nücker, 1987, Experimental electronic structure studies of La2−xSrxCuO4, Zeitschrift für Phys. B Condens. Matter, 67, 9, 10.1007/BF01307300 Tranquada, 1987, X-ray absorption studies of La2−x(Ba,Sr)xCuO4 superconductors, Phys. Rev. B, 35, 7187, 10.1103/PhysRevB.35.7187 Barlingay, 1990, Effects of zinc substitution on the electron superconductor Nd1.85Ce0.15CuO4−δ, Phys. Rev. B, 41, 4797, 10.1103/PhysRevB.41.4797 Eschrig, 2009, Tight-binding models for the iron-based superconductors, Phys. Rev. B, 80, 10.1103/PhysRevB.80.104503 Sunko, 2020, High-Temperature Superconductors as Ionic Metals, J. Supercond. Nov. Magn., 33, 27, 10.1007/s10948-019-05280-9 Mazumdar, 2018, Valence transition model of the pseudogap, charge order, and superconductivity in electron-doped and hole-doped copper oxides, Phys. Rev. B, 98, 10.1103/PhysRevB.98.205153 Wu, 2010, Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides, Phys. Rev. B, 81, 10.1103/PhysRevB.81.100512 Nikšić, 2014, Multiband Responses in High-Tc Cuprate Superconductors, J.Supercond. Nov. Magn., 27, 969, 10.1007/s10948-013-2420-0 Pelc, 2015, Mechanism of metallization and superconductivity suppression in YBa2(Cu0.97 Zn0.03)3O6.92 revealed by 67Zn NQR, New J. Phys., 17, 10.1088/1367-2630/17/8/083033 Jiang, 2020, Relevance of Cu–3d multiplet structure in models of high-Tc cuprates, Phys. Rev. B, 101, 10.1103/PhysRevB.101.035151 Eskes, 1993, Superexchange in the cuprates, Phys. Rev. B, 48, 9788, 10.1103/PhysRevB.48.9788 Moëlo, 2008, Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy, Eur. J. Mineral., 20, 7, 10.1127/0935-1221/2008/0020-1778 Jellinek, 1988, Transition metal chalcogenides. relationship between chemical composition, crystal structure and physical properties, React. Solids, 5, 323, 10.1016/0168-7336(88)80031-7 Fink, 2009, Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy, Phys. Rev. B - Condens. Matter Mater. Phys., 79, 10.1103/PhysRevB.79.155118 Dobrovol’skaya, 1982, Murunskite, K2Cu3FeS4, a new sulfide of potassium, copper, and iron, Int. Geol. Rev., 24, 1109, 10.1080/00206818209451049 Pekov, 2009, Crystal chemistry of murunskite, Dokl. Earth Sci., 424, 139, 10.1134/S1028334X09010292 Zubkova, 2012, private communication to D. K. S. Mujica, 1994, Synthesis and crystal structure of layered chalcogenides [KCuFeS2 and KCuFeSe2], Mater. Res. Bull., 29, 263, 10.1016/0025-5408(94)90022-1 Llanos, 1996, Electron transfer and electronic structure of KCuFeS2, J. Alloys Compd., 234, 40, 10.1016/0925-8388(95)02062-4 Zhang, 2014, Facile synthesis, magnetic, electrical and photoelectric properties of layered quaternary chalcogenides K2FeCu3Q4 (Q = S and Se), CrystEngComm, 16, 1810, 10.1039/c3ce42065e Folmer, 1980, The valence of copper in sulphides and selenides: An X-ray photoelectron spectroscopy study, J. Less-Common Met., 76, 153, 10.1016/0022-5088(80)90019-3 Pratt, 1994, X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation, Geochim. Cosmochim. Acta, 58, 827, 10.1016/0016-7037(94)90508-8 Gorham-Bergeron, 1977, E. Gorham-Bergeron, D. Emin, Phys. Rev. B 1977, 15, 3667, Phys. Rev. B, 15, 3667, 10.1103/PhysRevB.15.3667 Smidstrup, 2020, QuantumATK: an integrated platform of electronic and atomic-scale modelling tools, J. Phys. Condens. Matter, 32, 10.1088/1361-648X/ab4007 van Setten, 2018, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun., 226, 39, 10.1016/j.cpc.2018.01.012 Perdew, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Popescu, 2012, Extracting E versus →k effective band structure from supercell calculations on alloys and impurities, Phys. Rev. B, 85, 10.1103/PhysRevB.85.085201 Li, 2019, Hole pocket–driven superconductivity and its universal features in the electron-doped cuprates, Sci. Adv., 5 Mulliken, 1955, Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I, J. Chem. Phys, 23, 1833, 10.1063/1.1740588 Barisic, 2013, Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors, Proc. Natl. Acad. Sci. U. S. A., 110, 12235, 10.1073/pnas.1301989110 Pelc, 2019, Unusual behavior of cuprates explained by heterogeneous charge localization, Sci. Adv., 5, 10.1126/sciadv.aau4538 Pelc, 2018, Emergence of superconductivity in the cuprates via a universal percolation process, Nat. Commun., 9, 4327, 10.1038/s41467-018-06707-y Livache, 2019, Effect of Pressure on Interband and Intraband Transition of Mercury Chalcogenide Quantum Dots, J. Phys. Chem. C, 123, 13122, 10.1021/acs.jpcc.9b01695 Celeste, 2019, Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy, High Press. Res, 39, 608, 10.1080/08957959.2019.1666844