Synthesis of murunskite single crystals: A bridge between cuprates and pnictides
Tài liệu tham khảo
Bednorz, 1986, Possible high Tc superconductivity in the Ba−La−Cu−O system, Zeitschrift für Phys. B Condens. Matter, 64, 189, 10.1007/BF01303701
Kamihara, 2006, Iron-Based Layered Superconductor: LaOFeP, J. Am. Chem. Soc., 128, 10012, 10.1021/ja063355c
Fujimori, 1987, Spectroscopic evidence for strongly correlated electronic states in La-Sr-Cu and Y-Ba-Cu oxides, Phys. Rev. B, 35, 8814, 10.1103/PhysRevB.35.8814
Nücker, 1987, Experimental electronic structure studies of La2−xSrxCuO4, Zeitschrift für Phys. B Condens. Matter, 67, 9, 10.1007/BF01307300
Tranquada, 1987, X-ray absorption studies of La2−x(Ba,Sr)xCuO4 superconductors, Phys. Rev. B, 35, 7187, 10.1103/PhysRevB.35.7187
Barlingay, 1990, Effects of zinc substitution on the electron superconductor Nd1.85Ce0.15CuO4−δ, Phys. Rev. B, 41, 4797, 10.1103/PhysRevB.41.4797
Eschrig, 2009, Tight-binding models for the iron-based superconductors, Phys. Rev. B, 80, 10.1103/PhysRevB.80.104503
Sunko, 2020, High-Temperature Superconductors as Ionic Metals, J. Supercond. Nov. Magn., 33, 27, 10.1007/s10948-019-05280-9
Mazumdar, 2018, Valence transition model of the pseudogap, charge order, and superconductivity in electron-doped and hole-doped copper oxides, Phys. Rev. B, 98, 10.1103/PhysRevB.98.205153
Wu, 2010, Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides, Phys. Rev. B, 81, 10.1103/PhysRevB.81.100512
Nikšić, 2014, Multiband Responses in High-Tc Cuprate Superconductors, J.Supercond. Nov. Magn., 27, 969, 10.1007/s10948-013-2420-0
Pelc, 2015, Mechanism of metallization and superconductivity suppression in YBa2(Cu0.97 Zn0.03)3O6.92 revealed by 67Zn NQR, New J. Phys., 17, 10.1088/1367-2630/17/8/083033
Jiang, 2020, Relevance of Cu–3d multiplet structure in models of high-Tc cuprates, Phys. Rev. B, 101, 10.1103/PhysRevB.101.035151
Eskes, 1993, Superexchange in the cuprates, Phys. Rev. B, 48, 9788, 10.1103/PhysRevB.48.9788
Moëlo, 2008, Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy, Eur. J. Mineral., 20, 7, 10.1127/0935-1221/2008/0020-1778
Jellinek, 1988, Transition metal chalcogenides. relationship between chemical composition, crystal structure and physical properties, React. Solids, 5, 323, 10.1016/0168-7336(88)80031-7
Fink, 2009, Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy, Phys. Rev. B - Condens. Matter Mater. Phys., 79, 10.1103/PhysRevB.79.155118
Dobrovol’skaya, 1982, Murunskite, K2Cu3FeS4, a new sulfide of potassium, copper, and iron, Int. Geol. Rev., 24, 1109, 10.1080/00206818209451049
Pekov, 2009, Crystal chemistry of murunskite, Dokl. Earth Sci., 424, 139, 10.1134/S1028334X09010292
Zubkova, 2012, private communication to D. K. S.
Mujica, 1994, Synthesis and crystal structure of layered chalcogenides [KCuFeS2 and KCuFeSe2], Mater. Res. Bull., 29, 263, 10.1016/0025-5408(94)90022-1
Llanos, 1996, Electron transfer and electronic structure of KCuFeS2, J. Alloys Compd., 234, 40, 10.1016/0925-8388(95)02062-4
Zhang, 2014, Facile synthesis, magnetic, electrical and photoelectric properties of layered quaternary chalcogenides K2FeCu3Q4 (Q = S and Se), CrystEngComm, 16, 1810, 10.1039/c3ce42065e
Folmer, 1980, The valence of copper in sulphides and selenides: An X-ray photoelectron spectroscopy study, J. Less-Common Met., 76, 153, 10.1016/0022-5088(80)90019-3
Pratt, 1994, X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation, Geochim. Cosmochim. Acta, 58, 827, 10.1016/0016-7037(94)90508-8
Gorham-Bergeron, 1977, E. Gorham-Bergeron, D. Emin, Phys. Rev. B 1977, 15, 3667, Phys. Rev. B, 15, 3667, 10.1103/PhysRevB.15.3667
Smidstrup, 2020, QuantumATK: an integrated platform of electronic and atomic-scale modelling tools, J. Phys. Condens. Matter, 32, 10.1088/1361-648X/ab4007
van Setten, 2018, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun., 226, 39, 10.1016/j.cpc.2018.01.012
Perdew, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Popescu, 2012, Extracting E versus →k effective band structure from supercell calculations on alloys and impurities, Phys. Rev. B, 85, 10.1103/PhysRevB.85.085201
Li, 2019, Hole pocket–driven superconductivity and its universal features in the electron-doped cuprates, Sci. Adv., 5
Mulliken, 1955, Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I, J. Chem. Phys, 23, 1833, 10.1063/1.1740588
Barisic, 2013, Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors, Proc. Natl. Acad. Sci. U. S. A., 110, 12235, 10.1073/pnas.1301989110
Pelc, 2019, Unusual behavior of cuprates explained by heterogeneous charge localization, Sci. Adv., 5, 10.1126/sciadv.aau4538
Pelc, 2018, Emergence of superconductivity in the cuprates via a universal percolation process, Nat. Commun., 9, 4327, 10.1038/s41467-018-06707-y
Livache, 2019, Effect of Pressure on Interband and Intraband Transition of Mercury Chalcogenide Quantum Dots, J. Phys. Chem. C, 123, 13122, 10.1021/acs.jpcc.9b01695
Celeste, 2019, Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy, High Press. Res, 39, 608, 10.1080/08957959.2019.1666844