Estimation of oxygen consumption of lithobiid field populations from laboratory measurements
Tóm tắt
The oxygen consumption of two lithobiid populations in an old beech stand in the Solling is estimated. Respiration of single individuals was determined at different temperatures in a Warburg respirometer. Respiration rate depends exponentially on temperature (Q10 about 3). Respiration per unit weight decreases considerably with increasing weight in Lithobius mutabilis, whereas in Lithobius curtipes these differences are much lower. With regard to the transferability of the laboratory values to field conditions, the error introduced by use of an arithmetic temperature mean instead of integration over the actual temperature cycle is estimated. Respiration values determined with arithmetic and biological (after Nielsen 1978) temperature means are compared. It is shown that under the temperature conditions in the Solling the use of an arithmetic instead of a biological daily temperature mean (based on hourly temperature readings), and the use of an arithmetic instead of a biological monthly temperature mean (based on arithmetic daily means) only give slight underestimates, about 0.8% and 1.2% respectively. The use of an arithmetic instead of a biological annual mean (based on arithmetic monthly means) gives an underestimate of 14%. The influence of other factors affecting the Warburg apparatus is discussed. It is concluded that the metabolism of L. mutabilis and L. curtipes measured in a Warburg respirometer should be multiplied by a factor of about 1.75 to give an estimate of respiration in the field. The population of L. mutabilis respires 5.5×1.75=9.63 kJm-2 year-1, the population of L. curtipes 2.2×1.75=3.85 kJ m-2 year-1. The results obtained are compared with a short-cut method proposed by Phillipson (1970), the “best estimate”. Possible improvements of the method are discussed.
Tài liệu tham khảo
Agren GH, Axelson B (1980) Population respiration: a theoretical approach. Ecol Model 11:39–54
Albert AM (1977) Biomasse von Chilopoden in einem Buchenaltbestand des Solling. Verh Ges Ökologie, Göttingen 1976. Junk, The Hague p 93–101
Albert AM (1982a) Species spectrum and dispersion patterns of chilopods in three Solling habitats. Pedobologia 23:335–345
Albert AM (1982b) Deviations from Dyar's Rule in Lithobiidae. Zool Anz 208:192–207
Albert AM (1983) Life cycle of Lithobiidae, with a discussion of the r- and K-selection concept. Oecologia (Berlin) 56:272–279
Albert AM (1983) Energy budgets of two populations of long-lived arthropod predators (Chilopoda: Lithobiidae) in the Solling. Oecologia (Berlin) 56:292–305
Albert R (1981) Untersuchungen zur Struktur und Dynamik von Spinnengesellschaften verschiedener Vegetationstypen im Hoch-Solling. Dissertation Bremen
Altmüller R (1979) Untersuchungen über den Energieumsatz von Dipterenpopulationen im Buchenwald (Luzulo-Fagetum). Pedobiologia 19:245–278
Andersson G (1978) An investigation of the post-embryonic development of the Lithobiidae — some introductory aspects. Abh Verh naturw Ver Hamburg (NF) 21/22:63–71
Berthet P (1960) La mesure écologique de la température par détermination de la vitesse d'inversion du saccharose. Vegetatio Acta Geobotanica 9:198–207
Brody S (1945) Bioenergetics and growth, with special reference to the efficiency complex in domestic animals. Reinhold, New York
Burges H, Fenton E (1953) The effect of carbon dioxide on the growth of certain soil fungi. Trans Brit mycol Soc 36:104–108
Carey C (1979) Effect of constant and fluctuating temperatures on resting and active oxygen consumption of toads, Bufo boreas. Oecologia (Berl) 39:201–212
Cloudsley-Thompson JL (1953) The significance of fluctuating termperatures on the physiology and ecology of insects. Entomologist 86:183–189
Crisp DJ (1971) Energy flow measurements. In: NA Holme, AD McIntyre (eds), Methods for the study of marine benthos. IBP Handbook Nr. 16, Blackwell, Oxford p 197–279
Dame RF, Vernberg FJ (1978) The influence of constant and cyclic acclimation temperatures on the metabolic rates of Panopeus herbstii and Uca sugilator. Biol Bull 154:188–197
Dresco-Derouet L (1964) Le métabolisme respiratoire des scorpions. II. Mésures de l'intensité respiratoire chez quelques espèces à differentes températures. Bull Mus natn Hist nat, Paris 36:97–99
Dresco-Derouet L (1967) Biologie et métabolisme respiratoire d'Ischyropsalis luteipes Simon (Opiliones) adulte, au laboratoire. Annls Speleol 22:537–541
Dunger W (1968) Die Entwicklung der Bodenfauna auf rekultivierten Kippen and Halden des Braunkohlentagebaues. Abh Ber Naturkundemuseums Görlitz 43:1–256
Epp RW, Lewis WM Jr (1980) The nature and ecological significance of metabolic changes during the life history of copepods. Ecology 61:259–264
Goddard SJ (1979) The population metabolism and life history tactics of Neobisium muscorum (Leach) (Arachnida: Pseudoscorpiones). Oecologia (Berl) 42:91–105
Grimm R (1973) Zum Energieumsatz phytophager Insekten im Buchenwald. I. Untersuchungen an Populationen der Rüsselkäfer (Curculionidae) Rhynchaenus fagi L., Strophosomus (Schönherr) und Otiorrhynchus singularis L. Oecologia (Berl) 11:187–262
Grunert J (1974) Untersuchungen zur Biologie und ökologischen Energetik zweier Staphyliniden-Populationen im Solling. Diplomarbeit Göttingen
Hagstrum DW (1970) Physiology of food utilization by the spider Tarentula kochi (Araneae: Lycosidae). Ann ent Soc Amer 63:1305–1308
Hagvar S, Ostbye E (1974) Oxygen consumption, caloric values, water and ash content of some dominant terrestrial arthropods from alpine habitats at Finse, south Norway. Norsk Entomol Tidsskr 21:117–126
Hook RI Van Jr (1971) Energy and nutrient dynamics of spider and orthopteran populations in a grassland ecosystem. Ecol Mon 41:1–26
Humphreys WF (1975) The respiration of Geolycosa godeffroyi (Araneae: Lycosidae) under conditions of constant and cyclic temperature. Physiol Zool 48:269–281
Humphreys WF (1977) Variables influencing laboratory energy budgets of Geolycosa godeffroyi (Araneae). Oikos 28:225–233
Humphreys WF (1978) Ecological energetics of Geolycosa godeffroyi (Aranea: Lycosidae) with an appraisal of production efficiency in ectothermic animals. J Anim Ecol 47:627–652
Humphreys WF (1979) Production and respiration in animal populations. J Anim Ecol 48:427–453
Jensen TF, Nielsen MG (1975) The influence of body size and temperature on worker ant respiration. Nat Jutl 18:21–25
Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21
Koehler H (1976) Nahrungsspektrum und Nahrungsumsatz zweier Carabiden des Solling, Pterostichus oblongopunctatus (F.) und Pterostichus metallicus (F.). Diplomarbeit Göttingen
Krogh A (1914) The quantitative relation between temperature and standard metabolism in animals. Int Z phys-chem Biol 1:491–508
Lamb KP (1961) Some effects of fluctuating temperatures on the metabolism, development, and rate of population growth in the cabbage aphid, Brevicoryne brassicae. Ecology 42:740–745
Laybourn-Parry J, Strachan JM (1980) Respiratory metabolism of Cyclops bicuspidatus (Copepoda: Cyclopoida) from Esthwaite Water, Cumbria, Britain, UK. Oecologia (Berl) 46:386–390
Mason CF (1971) Respiration rates and population metabolism of woodland snails. Oecologia (Berl) 7:80–94
McBrayer JF, Reichle DE, Witkamp M (1974) Energy flow and nutrient cycling in a cryptozoan food-web. EDFB-IBP-73-8 Oak Ridge National Laboratory
McNeill S, Lawton JH (1970) Annual production and respiration in animal populations. Nature 225:472–474
Messenger PS (1964) The influence of rhythmically fluctuating temperatures on the development and reproduction of the spotted alfalfa aphid, Therioaphis maculata. J Econ Entomol 57:71–76
Miyashita K (1969) Effects of locomotory activity, temperature, and hunger on the respiratory rate of Lycosa-T-insignita Boes. et Str. (Araneae: Lycosidae). Appl Ent Zool 4:105–113
Moulder BC, Reichle DE (1972) Significance of spider predation in the energy dynamics of forest-floor arthropod communities. Ecol Mon 42:473–498
Nakamura K (1972) The ingestion in wolf spiders. II. The expression of degree of hunger and amount of ingestion in relation to spider's hunger. Res Popul Ecol 14:82–96
Nielsen CO (1961) Respiratory metabolism of some populations of enchytraeid worms and freeliving nematodes. Oikos 12:17–35
Nielsen MG (1978) The use of temperature data in ecological field investigations. Natura Jutlandica 20:255–258
Nielsen MG, Jensen TF (1977) Measurement of metabolism of worker ants by using the elimination of caesium-134. Oecologia (Berl) 30:209–214
Odum EP, Connell CE, Davenport LB (1962) Population energy flow of three primary consumer components of old field ecosystems. Ecology 43:88–96
Penteado CHS, Mendes EG (1978) Respiratory metabolism and tolerance in a tropical millipede, Rhinocricus padbergi Verhoeff, 1938. II.: The response to declining oxygen tensions and submersion in water. Rev Brasil Biol 38:851–862
Petrusewicz K, Macfadyen A (1970) Productivity of terrestrial animals. Principles and methods (IBP Handbook Nr.13) Blackwell, Oxford
Phillipson J (1962) Respirometry and the study of energy turnover in natural systems with particular reference to harvestspiders (Phalangida). Oikos 13:311–322
Phillipson J (1963) The use of respiratory data in estimating annual respiratory metabolism, with particular reference to Leiobunum rotundum (Latr.) Oikos 14:212–223
Phillipson J (1970) The “best estimate” of respiratory metabolism: its applicability to field situations. Pol Arch Hydrobiol 17:31–41
Phillipson J, Watson J (1965) Respiratory metabolism of the terrestrial isopod Oniscus asellus L. Oikos 16:78–87
Prosser CL, Brown EA (1962) Comparative animal physiology. 2nd ed., Saunders, Philadelphia
Reichle DE (1968) Relation of body size to food intake, oxyen consumption, and trace element metabolism in forest floor arthropods. Ecology 49:538–542
Reichle DE (1971) Energy and nutrient metabolism of soil and litter invertebrates. Unesco. Productivity of forest ecosystems. Proc. Brussels Symp. 1969 (Ecology and conservation 4) p 465–477
Remmert H, Wünderling K (1968) Temperature differences between arctic and alpine meadows and their ecological significance. Oecologia (Berl) 4:208–210
Roux C (1979) The influence of some ecological factors on the metabolism: temperature curve of the larvae of Limnephilus rombicus (Trichoptera, Limnephilidae). Freshw Biol 9:111–118
Schauermann J (1973) Zum Energieumsatz phytophager Insekten im Buchenwald. II. Die produktionsbiologische Stellung der Rüsselkäfer (Curculionidae) mit rhizophagen Larvenstadien. Oecologia (Berl) 13:313–350
Simon HR (1960) Zur Ernährungsbiologie von Lithobius forficatus. Zool Anz 164:19–26
Smalley A (1960) Energy flow of a salt marsh grasshopper population. Ecology 41:785–790
Solhöy T, Skartveit A (1975) Influence of various temperature approximations on estimates of field respiration in a mountain community. Ecol Stud 17:111–116
Steigen AL (1975) Respiratory rates and respiratory energy loss in terrestrial invertebrates from Hardangervidda. Ecol Stud 17:122–128
Weidemann G (1971) Food and energy turnover of predatory arthropods of the soil surface. Ecol Stud 2:110–118
Weidemann G (1972) Die Stellung epigäischer Raubarthropoden im Ökosystem Buchenwald. Verh dt zool Ges 65:106–116
Wieser W (1973) Effect of temperature on ectothermic organisms. Springer, Berl-Heidelberg-New York
Wightman JA (1977) Respirometry techniques for terrestrial invertebrates and their application to energetics studies. New Zealand Journal of Zoology 4:453–469
Wightman JA (1981) Why insect energy budgets do not balance. Oecologia (Berl) 50:166–169
Wignarajah S (1968) Energy dynamics of centipede populations (Lithobiomorpha, L. crassipes and L. forficatus) in a woodland ecosystem. Ph.D. thesis, Durham
Williams RB (1969) A table of effective temperatures for the metabolism of biological systems subjected to sinusoidal cycles in temperatures. J Theor Biol 24:240–245
Winter K (1972) Zum Energieumsatz phytophager Insekten im Buchenwald. Untersuchungen an Lepidopterenpopulationen. Dissertation Göttingen
Workman C (1980) A new chemical method for measurement of mean temperatures with special applicability to cold environments. Oikos 35:365–372
Zeuthen E (1970) Rate of living as related to body size in organisms. Pol Arch Hydrobiol 17:21–30