Statistical primer: multivariable regression considerations and pitfalls†

European Journal of Cardio-thoracic Surgery - Tập 55 Số 2 - Trang 179-185 - 2019
Stuart W Grant1, Graeme L. Hickey2, Stuart J. Head3
1Academic Surgery Unit, Institute of Cardiovascular Sciences, University of Manchester, ERC, Wythenshawe Hospital, Manchester, UK
2Coronary and Structural Heart, Medtronic, Watford, Herts, UK
3Department of Cardiothoracic Surgery, Erasmus University Medical Centre, Rotterdam, Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benedetto, 2018, Statistical primer: propensity score matching and its alternatives, Eur J Cardiothorac Surg, 53, 1112, 10.1093/ejcts/ezy167

Grant, 2018, Statistical primer: developing and validating a risk prediction model, Eur J Cardiothorac Surg, 54, 203, 10.1093/ejcts/ezy180

Thuijs, 2018, Statistical primer: basics of survival analysis for the cardiothoracic surgeon, Interact CardioVasc Thorac Surg, 27, 1, 10.1093/icvts/ivy010

Hickey, 2018, Statistical primer: performing repeated-measures analysis, Interact CardioVasc Thorac Surg, 26, 539, 10.1093/icvts/ivy009

Peters, 2008, Multifarious terminology: multivariable or multivariate? Univariable or univariate?, Paediatr Perinat Epidemiol, 22, 506., 10.1111/j.1365-3016.2008.00966.x

Hidalgo, 2013, Multivariate or multivariable regression?, Am J Public Health, 103, 39, 10.2105/AJPH.2012.300897

Vittinghoff, 2007, Relaxing the rule of ten events per variable in logistic and cox regression, Am J Epidemiol, 165, 710, 10.1093/aje/kwk052

Austin, 2017, Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models, Stat Methods Med Res, 26, 796, 10.1177/0962280214558972

Steyerberg, 2011, Logistic regression modeling and the number of events per variable: selection bias dominates, J Clin Epidemiol, 64, 1464, 10.1016/j.jclinepi.2011.06.016

van Smeden, 2018, Sample size for binary logistic prediction models: beyond events per variable criteria, Stat Methods Med Res

van Smeden, 2016, No rationale for 1 variable per 10 events criterion for binary logistic regression analysis, BMC Med Res Methodol, 16, 163, 10.1186/s12874-016-0267-3

Heinze, 2017, Five myths about variable selection, Transpl Int, 30, 6, 10.1111/tri.12895

Steyerberg, 1999, Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis, J Clin Epidemiol, 52, 935, 10.1016/S0895-4356(99)00103-1

Harrell, 2015, Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2, 10.1007/978-3-319-19425-7

Hastie, 2008, The Elements of Statistical Learning, 2

Hickey, 2018, Statistical primer: checking model assumptions with regression diagnostics, Interact CardioVasc Thorac Surg

Royston, 1999, The use of fractional polynomials to model continuous risk variables in epidemiology, Int J Epidemiol, 28, 964, 10.1093/ije/28.5.964

Durrleman, 1989, Flexible regression models with cubic splines, Stat Med, 8, 551, 10.1002/sim.4780080504

Royston, 2006, Dichotomizing continuous predictors in multiple regression: a bad idea, Stat Med, 25, 127, 10.1002/sim.2331

Altman, 2006, The cost of dichotomising continuous variables, BMJ, 332, 1080., 10.1136/bmj.332.7549.1080

Wasserstein, 2016, The ASA’s statement on P-values: context, process, and purpose, Am Stat, 70, 129, 10.1080/00031305.2016.1154108

Sauerbrei, 2006, Multivariable regression model building by using fractional polynomials: description of SAS, STATA and R programs, Comput Stat Data Anal, 50, 3464, 10.1016/j.csda.2005.07.015