Diffusion tensor tractography of the human brain cortico‐ponto‐cerebellar pathways: A quantitative preliminary study

Journal of Magnetic Resonance Imaging - Tập 32 Số 4 - Trang 809-817 - 2010
Arash Kamali1, Larry A. Kramer2, Richard E. Frye3, Ian J. Butler3, Khader M. Hasan2
1Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
2Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston Texas, USA.
3Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA

Tóm tắt

AbstractPurposeTo investigate the utility of diffusion tensor tractography at 1mm slice thickness to map and quantify the whole trajectory of different cortico‐ponto‐cerebellar pathways of the healthy adult human brain.Materials and MethodsThis work was approved by the local Institutional Review Board, and was Health Insurance Portability and Accountability Act (HIPAA) compliant. Five healthy right‐handed men (age range, 24–37 years) were studied and written informed consent was obtained. Diffusion tensor imaging data acquired with 1‐mm slice thickness at a 3.0 Tesla (T) clinical MRI scanner were prepared and analyzed using tractography methods to reconstruct the cortico‐ponto‐cerebellar pathways which included the fronto‐ponto‐cerebellar, parieto‐ponto‐cerebellar, occipito‐ponto‐cerebellar, and temporo‐ponto‐cerebellar tracts.ResultsWe demonstrate the feasibility of tractographic mapping and quantification of the four cortico‐ponto‐cerebellar system components based on their cortical connections in the healthy human brain using DTI data with thin 1‐mm sections.ConclusionIn vivo quantification of different cortico‐ponto‐cerebellar pathways based on cortical connection is feasible, using 1‐mm slices at 3.0T. J. Magn. Reson. Imaging 2010;32:809–817. © 2010 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

Afifi AK., 1998, Functional neuroanatomy, 730

Nolte J., 2002, The human brain. An introduction to its functional anatomy, 650

10.1007/s00234-007-0351-9

10.1007/s002340000336

10.1212/01.wnl.0000249307.59950.f8

10.1007/s00415-005-0708-0

10.1159/000096181

10.1093/brain/awl166

10.1016/j.biopsych.2004.11.047

Spanos GK, 2007, Cerebellar atrophy after moderate‐to‐severe pediatric traumatic brain injury, AJNR Am J Neuroradiol, 28, 537

10.1073/pnas.96.18.10422

10.1006/nimg.2001.0861

10.1002/mrm.10552

10.1016/j.mri.2007.02.011

10.1016/j.mri.2008.10.007

10.1148/radiol.2301021640

Hains DE., 2007, Neuroanatomy. An atlas of structures, 341

10.1093/cercor/bhj024

10.1007/s00234-007-0267-4

10.1016/j.neuroimage.2004.02.001

10.1016/0006-8993(90)91347-J

10.1007/BF00612128

10.1002/cne.901180204

10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0

10.1016/j.neuroimage.2007.07.053

Magrotti E, 1990, Ataxic hemiparesis syndrome clinical and CT study of 20 new cases, Funct Neurol, 5, 65

10.1001/archneur.1983.04050070079023

10.1016/0022-510X(87)90274-7

10.1093/brain/awh138

Iwabuchi K, 1999, Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations., Rev Neurol (Paris), 155, 255

10.1007/BF01600284

De Simone T, 2005, Wallerian degeneration of the pontocerebellar fibers, AJNR Am J Neuroradiol, 26, 1062

10.1093/cercor/bhn072

10.1007/s12311-008-0083-3

10.1016/j.neurad.2007.03.002

10.1016/j.neurad.2007.11.001

10.1038/nrn2332

10.1016/j.neuroimage.2008.03.041

10.1371/journal.pone.0005101