Design and performance analysis of wrap-gate CNTFET-based ring oscillators for IoT applications

Integration - Tập 70 - Trang 116-125 - 2020
Mohammad Khaleqi Qaleh Jooq1, Ali Mir1, Sattar Mirzakuchaki2, Ali Farmani1
1Department of Electrical Engineering, Lorestan University, Lorestan, Khorramabad, Iran
2Electrical Engineering Department of Iran University of Science and Technology, Narmak, Tehran, Iran

Tài liệu tham khảo

Li, 2010, A 19 ghz linear-wide-tuning-range quadrature ring oscillator in 130 nm cmos for non-contact vital sign radar application, IEEE Microw. Wirel. Compon. Lett., 20, 34, 10.1109/LMWC.2009.2035961 Razavi, 1998, vol. 2 Salem, 2017, The design and analysis of dual control voltages delay cell for low power and wide tuning range ring oscillators in 65 nm cmos technology for cdr applications, AEU-Int. J. Electron. Commun., 82, 406, 10.1016/j.aeue.2017.10.012 Lim, 2010, An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 Cheng, 2016, A low-power gateable vernier ring oscillator time-to-digital converter for biomedical imaging applications, IEEE Trans. Biomed. Circuits Syst., 10, 445, 10.1109/TBCAS.2015.2434957 Chahine, 2018, A low-noise voltage-controlled ring oscillator in 28-nm fdsoi technology for uwb applications, AEU-Int. J. Electron. Commun., 97, 94, 10.1016/j.aeue.2018.10.003 Carreon-Bautista, 2016, An autonomous energy harvesting power management unit with digital regulation for iot applications, IEEE J. Solid State Circuits, 51, 1457, 10.1109/JSSC.2016.2545709 Staszewski, 2011, State-of-the-art and future directions of high-performance all-digital frequency synthesis in nanometer cmos, IEEE Trans. Circuits Syst. I: Reg. Pap., 58, 1497, 10.1109/TCSI.2011.2150890 Che, 2013, T-gate aligned nanotube radio frequency transistors and circuits with superior performance, ACS Nano, 7, 4343, 10.1021/nn400847r Qiu, 2017, Scaling carbon nanotube complementary transistors to 5-nm gate lengths, Science, 355, 271, 10.1126/science.aaj1628 Dai, 2012, vol. 708 McNeill, 2009 Li, 2012, A low-phase-noise wide-tuning-range oscillator based on resonant mode switching, IEEE J. Solid State Circuits, 47, 1295, 10.1109/JSSC.2012.2190185 Ramazani, 2014, Cmos ring oscillator with combined delay stages, AEU-Int. J. Electron. Commun., 68, 515, 10.1016/j.aeue.2013.12.008 Afzalian, 2018, What is the maximum achievable oscillation frequency in a specified cmos process?, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. Bajestan, 2015, A low phase-noise wide tuning-range quadrature oscillator using a transformer-based dual-resonance lc ring, IEEE Trans. Microw. Theory Tech., 63, 1142, 10.1109/TMTT.2015.2409252 Afacan, 2019, A comprehensive analysis on differential cross-coupled cmos lc oscillators via multi-objective optimization, Integration, 10.1016/j.vlsi.2019.01.012 Ahmadi-Mehr, 2016, Analysis and design of a multi-core oscillator for ultra-low phase noise, IEEE Trans. Circuits Syst. I: Reg. Pap., 63, 529, 10.1109/TCSI.2016.2529218 Pereira, 2013, 363 Min, 2013, A 90-nm cmos 5-ghz ring-oscillator pll with delay-discriminator-based active phase-noise cancellation, IEEE J. Solid State Circuits, 48, 1151, 10.1109/JSSC.2013.2252515 Zhang, 2011, A low-power, process-and-temperature-compensated ring oscillator with addition-based current source, IEEE Trans. Circuits Syst. I: Reg. Pap., 58, 868, 10.1109/TCSI.2010.2092110 Ding, 2017, A 2.4 ghz ble-compliant fully-integrated wakeup receiver for latency-critical iot applications using a 2-dimensional wakeup pattern in 90nm cmos, 168 Gierkink, 2003, A low-phase-noise 5-ghz cmos quadrature vco using superharmonic coupling, IEEE J. Solid State Circuits, 38, 1148, 10.1109/JSSC.2003.813297 Hegazi, 2001, A filtering technique to lower lc oscillator phase noise, IEEE J. Solid State Circuits, 36, 1921, 10.1109/4.972142 Tiebout, 2001, Low-power low-phase-noise differentially tuned quadrature vco design in standard cmos, IEEE J. Solid State Circuits, 36, 1018, 10.1109/4.933456 Lee, 2007, A subthreshold low phase noise cmos lc vco for ultra low power applications, IEEE Microw. Wirel. Compon. Lett., 17, 796, 10.1109/LMWC.2007.908057 Li, 2012, A low-phase-noise wide-tuning-range oscillator based on resonant mode switching, IEEE J. Solid State Circuits, 47, 1295, 10.1109/JSSC.2012.2190185 Borjkhani, 2014, Low power current starved sub-harmonic injection locked ring oscillator, 38 Hassanli, 2016, A low-power wide tuning-range cmos current-controlled oscillator, Integr. VLSI J., 55, 57, 10.1016/j.vlsi.2016.03.001 Suman, 2012, An improved performance ring oscillator design, 236 Mahato, 2014, Ultra low frequency cmos ring oscillator design, 1 El Mourabit, 2012, A new method to enhance frequency operation of cmos ring oscillators, Int. J. Electron., 99, 351, 10.1080/00207217.2011.629214 Ghonoodi, 2016, Analysis of frequency and amplitude in cmos differential ring oscillators, Integr. VLSI J., 52, 253, 10.1016/j.vlsi.2015.07.004 Thabet, 2012, A low power consumption cmos differential-ring vco for a wireless sensor, Analog Integr. Circuits Signal Process., 73, 731, 10.1007/s10470-012-9914-8 Park, 2009, A 95nw ring oscillator-based temperature sensor for rfid tags in 0.13 m cmos, 1153 Pandey, 2014, Ring and coupled ring oscillator in subthreshold region, 132 Elrabaa, 2014, A portable high-frequency digitally controlled oscillator (dco), Integr. VLSI J., 47, 339, 10.1016/j.vlsi.2013.10.009 Jin, 2012, Single cdta-based current-mode quadrature oscillator, AEU-Int. J. Electron. Commun., 66, 933, 10.1016/j.aeue.2012.03.018 Casaleiro, 2016, A quadrature rc-oscillator with capacitive coupling, Integr. VLSI J., 52, 260, 10.1016/j.vlsi.2015.06.006 Talegaonkar, 2017, A 5ghz digital fractional-n pll using a 1-bit deltasigma frequency-to-digital converter in 65 nm cmos, IEEE J. Solid State Circuits, 52, 2306, 10.1109/JSSC.2017.2718670 Wu, 2017, 64-qam 60-ghz cmos transceivers for ieee 802.11 ad/ay, IEEE J. Solid State Circuits, 52, 2871, 10.1109/JSSC.2017.2740264 Torrens, 2017, A 65-nm reliable 6t cmos sram cell with minimum size transistors, IEEE Trans. Emerg. Top. Comput., 1 Jooq, 2018, Post-layout simulation of an ultra-low-power ota using dtmos input differential pair, Int. J. Electron. Lett., 6, 168, 10.1080/21681724.2017.1335782 Skotnicki, 2005, The road to the end of cmos scaling, IEEE Circuits Devices Mag., 21, 16, 10.1109/MCD.2005.1388765 Kuhn, 2012, Considerations for ultimate cmos scaling, IEEE Trans. Electron Devices, 59, 1813, 10.1109/TED.2012.2193129 Haensch, 2006, Silicon cmos devices beyond scaling, IBM J. Res. Dev., 50, 339, 10.1147/rd.504.0339 Geim, 2010, The rise of graphene, 11 Baqir, 2019, Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure, IEEE Photon. J., 10.1109/JPHOT.2019.2931586 Ghodrati, 2019, Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study, IEEE Sens. J., 10.1109/JSEN.2019.2916850 Farmani, 2019, Graphene sensor based on surface plasmon resonance for optical scanning, IEEE Photonics Technol. Lett., 31, 643, 10.1109/LPT.2019.2904618 Farmani, 2018, Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hnchen effect, Appl. Surf. Sci., 453, 358, 10.1016/j.apsusc.2018.05.092 Tulevski, 2014, Toward high-performance digital logic technology with carbon nanotubes, ACS Nano, 8, 8730, 10.1021/nn503627h Bagheri, 2017, Modelling and analysis of crosstalk induced noise effects in bundle swcnt interconnects and its impact on signal stability, J. Comput. Electron., 16, 845, 10.1007/s10825-017-1028-1 Abdali, 2014, A band structure study on inter-wall conductance of double-walled carbon nanotubes, Mater. Sci. Semicond. Process., 17, 222, 10.1016/j.mssp.2013.09.016 Farmani, 2019, Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range, JOSA B, 36, 401, 10.1364/JOSAB.36.000401 Farmani, 2019, Graphene plasmonic: switching applications, 455 Drkop, 2004, Extraordinary mobility in semiconducting carbon nanotubes, Nano Lett., 4, 35, 10.1021/nl034841q Brady, 2016, Quasi-ballistic carbon nanotube array transistors with current density exceeding si and gaas, Sci. Adv., 2, 10.1126/sciadv.1601240 Dokania, 2016, Analytical modeling of wrap-gate carbon nanotube fet with parasitic capacitances and density of states, IEEE Trans. Electron Devices, 63, 3314, 10.1109/TED.2016.2581119 Shirazi, 2011, Dependence of carbon nanotube field effect transistors performance on doping level of channel at different diameters: on/off current ratio, Appl. Phys. Lett., 99, 263104, 10.1063/1.3672220 Shirazi, 2013, High on/off current ratio in ballistic cntfets based on tuning the gate insulator parameters for different ambient temperatures, Appl. Phys. A, 113, 447, 10.1007/s00339-012-7543-9 Shirazi, 2013, Performance dependency on doping level of carbon nanotube for ballistic cntfets, EPL (Europhys. Lett.), 103, 68009, 10.1209/0295-5075/103/68009 Shirazi, 2019, Gaa cnt tfets structural engineering: a higher\biosccon current, lower ambipolarity, IEEE Trans. Electron Devices, 10.1109/TED.2019.2912950 Jooq, 2018, Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors, Phys. E Low-dimens. Syst. Nanostruct., 104, 286, 10.1016/j.physe.2018.08.008 Yang, 2017, Hardware designs for security in ultra-low-power iot systems: an overview and survey, IEEE Micro, 37, 72, 10.1109/MM.2017.4241357 Burdett, 2015, Ultra-low-power wireless systems: energy-efficient radios for the internet of things, IEEE Solid-State Circuits Mag., 7, 18, 10.1109/MSSC.2015.2417095 Nayak, 2017, Low power ring oscillator for iot applications, Analog Integr. Circuits Signal Process., 93, 257, 10.1007/s10470-017-1015-2 Jalil, 2013, Cmos differential ring oscillators: review of the performance of cmos ros in communication systems, IEEE Microw. Mag., 14, 97, 10.1109/MMM.2013.2259401 van der Tang, 2000, Oscillator design efficiency: a new figure of merit for oscillator benchmarking, vol. 2, 533 van der Tang, 2002 Franklin, 2013, Carbon nanotube complementary wrap-gate transistors, Nano Lett., 13, 2490, 10.1021/nl400544q Marani, 2017, A compact noise model for c-cntfets, ECS J. Solid State Sci. Technol., 6, M44, 10.1149/2.0341704jss Bazzi, 2017, A low-noise voltage-controlled ring oscillator in 28-nm fdsoi technology, 1 Yousef, 2017, A low phase noise, high figure of merit, 3.1 ghz3.5 ghz ring oscillator using edge injection technique, 37 Japa, 2016, Reliability enhancement of a steep slope tunnel transistor based ring oscillator designs with circuit interaction, IET Circuits, Devices Syst., 10, 522, 10.1049/iet-cds.2016.0262 Singhal, 2018, Design of 4.9 ghz current starved vco for pll and cdr, 864 Hassanli, 2016, A low-power wide tuning-range cmos current-controlled oscillator, Integr. VLSI J., 55, 57, 10.1016/j.vlsi.2016.03.001 Lee, 2013, Design of a three-stage ring-type voltage-controlled oscillator with a wide tuning range by controlling the current level in an embedded delay cell, Microelectron. J., 44, 1328, 10.1016/j.mejo.2013.09.003