Effect of ceiling extraction system on the smoke thermal stratification in the longitudinal ventilation tunnel

Applied Thermal Engineering - Tập 109 - Trang 312-317 - 2016
L.J. Li1, F. Tang1,2, M.S. Dong1, C.F. Tao
1School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
2Key Laboratory of Building Fire Protection Engineering and Technology of MPS, Tianjin 300381, China

Tài liệu tham khảo

Nævestad, 2014, A survey of vehicle fires in Norwegian road tunnels 2008–2011, Tunn. Undergr. Space Technol., 41, 104, 10.1016/j.tust.2013.12.001 Hartman, 2006, Tunnel ventilation and safety in escape routes, Tunn. Undergr. Space Technol., 21, 293, 10.1016/j.tust.2005.12.152 Hu, 2007, Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling, Build. Environ., 42, 3905, 10.1016/j.buildenv.2006.10.052 Lee, 2006, A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio, Build. Environ., 41, 719, 10.1016/j.buildenv.2005.03.010 Zhang, 2007, Numerical simulations on fire spread and smoke movement in an underground car park, Build. Environ., 42, 3466, 10.1016/j.buildenv.2006.11.002 Vauquelin, 2008, Experimental simulations of fire-induced smoke control in tunnels using an “air–helium reduced scale model”: principle, limitations, results and future, Tunn. Undergr. Space Technol., 23, 171, 10.1016/j.tust.2007.04.003 Chow, 2015, Smoke movement in tilted tunnel fires with longitudinal ventilation, Fire Saf. J., 75, 14, 10.1016/j.firesaf.2015.04.001 Ingason, 2010, Model scale tunnel fire tests with longitudinal ventilation, Fire Saf. J., 45, 371, 10.1016/j.firesaf.2010.07.004 Carvel, 2001, The influence of longitudinal ventilation systems on fires in tunnels, Tunn. Undergr. Space Technol., 16, 3, 10.1016/S0886-7798(01)00025-6 Zhong, 2013, Influence of longitudinal wind on natural ventilation with vertical shaft in a road tunnel fire, Int. J. Heat Mass Transf., 57, 671, 10.1016/j.ijheatmasstransfer.2012.10.063 Fan, 2016, Effect of tunnel cross section on gas temperatures and heat fluxes in case of large heat release rate, Appl. Therm. Eng., 93, 405, 10.1016/j.applthermaleng.2015.09.048 Kurioka, 2003, Fire properties in near field of square fire source with longitudinal ventilation in tunnels, Fire Saf. J., 38, 319, 10.1016/S0379-7112(02)00089-9 Li, 2011, The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires, Fire Saf. J., 46, 204, 10.1016/j.firesaf.2011.02.002 Gao, 2015, Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept, Int. J. Heat Mass Transf., 84, 262, 10.1016/j.ijheatmasstransfer.2015.01.006 Liu, 2016, Study on longitudinal temperature distribution of fire-induced ceiling flow in tunnels with different sectional coefficients, Tunn. Undergr. Space Technol., 54, 49, 10.1016/j.tust.2016.01.031 Wang, 2015, Maximum temperature of smoke beneath ceiling in tunnel fire with vertical shafts, Tunn. Undergr. Space Technol., 50, 189, 10.1016/j.tust.2015.06.011 Hu, 2006, On the maximum smoke temperature under ceiling in tunnel fires, Tunn. Undergr. Space Technol., 21, 650, 10.1016/j.tust.2005.10.003 Li, 2010, Study of critical velocity and back-layering length in longitudinally ventilated tunnel fires, Fire Saf. J., 45, 361, 10.1016/j.firesaf.2010.07.003 Hu, 2008, Studies on buoyancy-driven back-layering in tunnel fires, Exp. Therm. Fluid Sci., 32, 1468, 10.1016/j.expthermflusci.2008.03.005 Zhang, 2016, An experimental investigation on blockage effect of metro train on the smoke back-layering in subway tunnel fires, Appl. Therm. Eng., 99, 214, 10.1016/j.applthermaleng.2015.12.085 Ko, 2010, An experimental study on the effect of slope on the critical velocity in tunnel fires, J. Fire Sci, 28, 27, 10.1177/0734904109106547 Lee, 2012, Effect of vehicular blockage on critical ventilation velocity and tunnel fire behavior in longitudinally ventilated tunnels, Fire Saf. J., 53, 35, 10.1016/j.firesaf.2012.06.013 Gannouni, 2015, Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires, Tunn. Undergr. Space Technol., 48, 147, 10.1016/j.tust.2015.03.003 Hu, 2006, Full-scale experimental studies on mechanical smoke exhaust efficiency in an underground corridor, Build. Environ., 41, 1622, 10.1016/j.buildenv.2005.06.025 Huang, 2009, Optimum design for smoke-control system in buildings considering robustness using CFD and Genetic Algorithms, Build. Environ., 44, 2218, 10.1016/j.buildenv.2009.02.002 Oka, 1995, Control of smoke flow in tunnel fires, Fire Saf. J., 25, 305, 10.1016/0379-7112(96)00007-0 Ingason, 2007, Correlation between temperatures and oxygen measurements in a tunnel flow, Fire Saf. J., 75, 75, 10.1016/j.firesaf.2006.08.003 Ellisonand, 1959, Turbulent entrainment in stratified flows, J. Fluid Mech., 6, 423, 10.1017/S0022112059000738 Oka, 2016, Ceiling-jet thickness and vertical distribution along flat-ceilinged horizontal tunnel with natural ventilation, Tunn. Undergr. Space Technol., 53, 68, 10.1016/j.tust.2015.12.019 Yang, 2010, Experimental study on buoyant flow stratification induced by a fire in a horizontal channel, Appl. Therm. Eng., 30, 872, 10.1016/j.applthermaleng.2009.12.019 Newman, 1984, Experimental evaluation of fire-induced stratification, Combust. Flame, 57, 33, 10.1016/0010-2180(84)90135-4 Nyman, 2012, Temperature stratification in tunnels, Fire Saf. J., 48, 30, 10.1016/j.firesaf.2011.11.002 H. Ingason, Model Scale Tunnel Fire Tests—Longitudinal Ventilation. SP Swedish National Testing and Research Institute, SP Report, 2005:49, Borås, Sweden, 2005. Lönnermark, 2005, Gas temperatures in heavy goods vehicle fires in tunnels, Fire Saf. J., 40, 506, 10.1016/j.firesaf.2005.05.003 Ingason, 2015, Runehamar tunnel fire tests, Fire Saf. J., 71, 134, 10.1016/j.firesaf.2014.11.015 Tanaka, 2015, Performance validation of a hybrid ventilation strategy comprising longitudinal and point ventilation by a fire experiment using a model-scale tunnel, Fire Saf. J., 71, 287, 10.1016/j.firesaf.2014.11.025 Chen, 2013, Studies on buoyancy driven two-directional smoke flow layering length with combination of point extraction and longitudinal ventilation in tunnel fires, Fire Saf. J., 59, 94, 10.1016/j.firesaf.2013.04.003 Hu, 2014, A global model on temperature profile of buoyant ceiling gas flow in a channel with combining mass and heat loss due to ceiling extraction and longitudinal forced air flow, Int. J. Heat Mass Transf., 79, 885, 10.1016/j.ijheatmasstransfer.2014.08.045 Tang, 2016, Thermal smoke back-layering flow length with ceiling extraction at upstream side of fire source in a longitudinal ventilated tunnel, Appl. Therm. Eng., 106, 125, 10.1016/j.applthermaleng.2016.05.173 Yang, 2012, Comparative study on carbon monoxide stratification and thermal stratification in a horizontal channel fire, Build. Environ., 49, 1, 10.1016/j.buildenv.2011.09.009 Tang, 2013, Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: An experimental investigation and global correlations, Appl. Therm. Eng., 60, 7, 10.1016/j.applthermaleng.2013.06.033 Hu, 2013, A non-dimensional global correlation of maximum gas temperature beneath ceiling with different blockage-fire distance in a longitudinal ventilated tunnel, Appl. Therm. Eng., 56, 77, 10.1016/j.applthermaleng.2013.03.021