Effect of ceiling extraction system on the smoke thermal stratification in the longitudinal ventilation tunnel
Tài liệu tham khảo
Nævestad, 2014, A survey of vehicle fires in Norwegian road tunnels 2008–2011, Tunn. Undergr. Space Technol., 41, 104, 10.1016/j.tust.2013.12.001
Hartman, 2006, Tunnel ventilation and safety in escape routes, Tunn. Undergr. Space Technol., 21, 293, 10.1016/j.tust.2005.12.152
Hu, 2007, Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling, Build. Environ., 42, 3905, 10.1016/j.buildenv.2006.10.052
Lee, 2006, A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio, Build. Environ., 41, 719, 10.1016/j.buildenv.2005.03.010
Zhang, 2007, Numerical simulations on fire spread and smoke movement in an underground car park, Build. Environ., 42, 3466, 10.1016/j.buildenv.2006.11.002
Vauquelin, 2008, Experimental simulations of fire-induced smoke control in tunnels using an “air–helium reduced scale model”: principle, limitations, results and future, Tunn. Undergr. Space Technol., 23, 171, 10.1016/j.tust.2007.04.003
Chow, 2015, Smoke movement in tilted tunnel fires with longitudinal ventilation, Fire Saf. J., 75, 14, 10.1016/j.firesaf.2015.04.001
Ingason, 2010, Model scale tunnel fire tests with longitudinal ventilation, Fire Saf. J., 45, 371, 10.1016/j.firesaf.2010.07.004
Carvel, 2001, The influence of longitudinal ventilation systems on fires in tunnels, Tunn. Undergr. Space Technol., 16, 3, 10.1016/S0886-7798(01)00025-6
Zhong, 2013, Influence of longitudinal wind on natural ventilation with vertical shaft in a road tunnel fire, Int. J. Heat Mass Transf., 57, 671, 10.1016/j.ijheatmasstransfer.2012.10.063
Fan, 2016, Effect of tunnel cross section on gas temperatures and heat fluxes in case of large heat release rate, Appl. Therm. Eng., 93, 405, 10.1016/j.applthermaleng.2015.09.048
Kurioka, 2003, Fire properties in near field of square fire source with longitudinal ventilation in tunnels, Fire Saf. J., 38, 319, 10.1016/S0379-7112(02)00089-9
Li, 2011, The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires, Fire Saf. J., 46, 204, 10.1016/j.firesaf.2011.02.002
Gao, 2015, Experimental analysis of the influence of accumulated upper hot layer on the maximum ceiling gas temperature by a modified virtual source origin concept, Int. J. Heat Mass Transf., 84, 262, 10.1016/j.ijheatmasstransfer.2015.01.006
Liu, 2016, Study on longitudinal temperature distribution of fire-induced ceiling flow in tunnels with different sectional coefficients, Tunn. Undergr. Space Technol., 54, 49, 10.1016/j.tust.2016.01.031
Wang, 2015, Maximum temperature of smoke beneath ceiling in tunnel fire with vertical shafts, Tunn. Undergr. Space Technol., 50, 189, 10.1016/j.tust.2015.06.011
Hu, 2006, On the maximum smoke temperature under ceiling in tunnel fires, Tunn. Undergr. Space Technol., 21, 650, 10.1016/j.tust.2005.10.003
Li, 2010, Study of critical velocity and back-layering length in longitudinally ventilated tunnel fires, Fire Saf. J., 45, 361, 10.1016/j.firesaf.2010.07.003
Hu, 2008, Studies on buoyancy-driven back-layering in tunnel fires, Exp. Therm. Fluid Sci., 32, 1468, 10.1016/j.expthermflusci.2008.03.005
Zhang, 2016, An experimental investigation on blockage effect of metro train on the smoke back-layering in subway tunnel fires, Appl. Therm. Eng., 99, 214, 10.1016/j.applthermaleng.2015.12.085
Ko, 2010, An experimental study on the effect of slope on the critical velocity in tunnel fires, J. Fire Sci, 28, 27, 10.1177/0734904109106547
Lee, 2012, Effect of vehicular blockage on critical ventilation velocity and tunnel fire behavior in longitudinally ventilated tunnels, Fire Saf. J., 53, 35, 10.1016/j.firesaf.2012.06.013
Gannouni, 2015, Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires, Tunn. Undergr. Space Technol., 48, 147, 10.1016/j.tust.2015.03.003
Hu, 2006, Full-scale experimental studies on mechanical smoke exhaust efficiency in an underground corridor, Build. Environ., 41, 1622, 10.1016/j.buildenv.2005.06.025
Huang, 2009, Optimum design for smoke-control system in buildings considering robustness using CFD and Genetic Algorithms, Build. Environ., 44, 2218, 10.1016/j.buildenv.2009.02.002
Oka, 1995, Control of smoke flow in tunnel fires, Fire Saf. J., 25, 305, 10.1016/0379-7112(96)00007-0
Ingason, 2007, Correlation between temperatures and oxygen measurements in a tunnel flow, Fire Saf. J., 75, 75, 10.1016/j.firesaf.2006.08.003
Ellisonand, 1959, Turbulent entrainment in stratified flows, J. Fluid Mech., 6, 423, 10.1017/S0022112059000738
Oka, 2016, Ceiling-jet thickness and vertical distribution along flat-ceilinged horizontal tunnel with natural ventilation, Tunn. Undergr. Space Technol., 53, 68, 10.1016/j.tust.2015.12.019
Yang, 2010, Experimental study on buoyant flow stratification induced by a fire in a horizontal channel, Appl. Therm. Eng., 30, 872, 10.1016/j.applthermaleng.2009.12.019
Newman, 1984, Experimental evaluation of fire-induced stratification, Combust. Flame, 57, 33, 10.1016/0010-2180(84)90135-4
Nyman, 2012, Temperature stratification in tunnels, Fire Saf. J., 48, 30, 10.1016/j.firesaf.2011.11.002
H. Ingason, Model Scale Tunnel Fire Tests—Longitudinal Ventilation. SP Swedish National Testing and Research Institute, SP Report, 2005:49, Borås, Sweden, 2005.
Lönnermark, 2005, Gas temperatures in heavy goods vehicle fires in tunnels, Fire Saf. J., 40, 506, 10.1016/j.firesaf.2005.05.003
Ingason, 2015, Runehamar tunnel fire tests, Fire Saf. J., 71, 134, 10.1016/j.firesaf.2014.11.015
Tanaka, 2015, Performance validation of a hybrid ventilation strategy comprising longitudinal and point ventilation by a fire experiment using a model-scale tunnel, Fire Saf. J., 71, 287, 10.1016/j.firesaf.2014.11.025
Chen, 2013, Studies on buoyancy driven two-directional smoke flow layering length with combination of point extraction and longitudinal ventilation in tunnel fires, Fire Saf. J., 59, 94, 10.1016/j.firesaf.2013.04.003
Hu, 2014, A global model on temperature profile of buoyant ceiling gas flow in a channel with combining mass and heat loss due to ceiling extraction and longitudinal forced air flow, Int. J. Heat Mass Transf., 79, 885, 10.1016/j.ijheatmasstransfer.2014.08.045
Tang, 2016, Thermal smoke back-layering flow length with ceiling extraction at upstream side of fire source in a longitudinal ventilated tunnel, Appl. Therm. Eng., 106, 125, 10.1016/j.applthermaleng.2016.05.173
Yang, 2012, Comparative study on carbon monoxide stratification and thermal stratification in a horizontal channel fire, Build. Environ., 49, 1, 10.1016/j.buildenv.2011.09.009
Tang, 2013, Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: An experimental investigation and global correlations, Appl. Therm. Eng., 60, 7, 10.1016/j.applthermaleng.2013.06.033
Hu, 2013, A non-dimensional global correlation of maximum gas temperature beneath ceiling with different blockage-fire distance in a longitudinal ventilated tunnel, Appl. Therm. Eng., 56, 77, 10.1016/j.applthermaleng.2013.03.021