Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor
Tài liệu tham khảo
Chong, 2010, Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039
Ahmed, 2010, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, Desalination, 261, 3, 10.1016/j.desal.2010.04.062
Yang, 2009, Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation, Appl. Catal. B Environ., 91, 657, 10.1016/j.apcatb.2009.07.006
Yang, 2009, Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes, J. Photochem. Photobiol., A, 208, 66, 10.1016/j.jphotochem.2009.08.007
Vinu, 2009, Kinetics of sonophotocatalytic degradation of anionic dyes with nano-TiO2, Environ. Sci. Technol., 43, 473, 10.1021/es8025648
Chin, 2006, The stability of polymeric membranes in a TiO2 photocatalysis process, J. Membr. Sci., 275, 202, 10.1016/j.memsci.2005.09.033
Mozia, 2010, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol., 73, 71, 10.1016/j.seppur.2010.03.021
Kim, 2003, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci., 211, 157, 10.1016/S0376-7388(02)00418-0
Wang, 2009, Surface modification of polypropylene microporous membrane by grafting acrylic acid using physisorbed initiators method, J. Appl. Polym. Sci., 112, 3728, 10.1002/app.29681
Xu, 2002, Microporous polypropylene hollow fiber membrane – Part I. Surface modification by the graft polymerization of acrylic acid, J. Membr. Sci., 196, 221, 10.1016/S0376-7388(01)00600-7
Jaleh, 2010, Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma, Appl. Surf. Sci., 257, 1655, 10.1016/j.apsusc.2010.08.117
Liu, 2005, Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): A facile plasma approach, J. Membr. Sci., 249, 21, 10.1016/j.memsci.2004.10.001
Yang, 2005, Surface modification of polypropylene microporous membranes with a novel glycopolymer, Chem. Mater., 17, 3050, 10.1021/cm048012x
Yu, 2009, Thermo- and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization, J. Membr. Sci., 343, 82, 10.1016/j.memsci.2009.07.012
Zhou, 2010, Development of a novel RAFT-UV grafting technique to modify polypropylene membrane used for NOM removal, Sep. Purif. Technol., 71, 233, 10.1016/j.seppur.2009.12.001
Guo, 2006, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J., 119, 55, 10.1016/j.cej.2006.01.017
Yu, 2010, Manipulating membrane permeability and protein rejection of UV-modified polypropylene macroporous membrane, J. Membr. Sci., 364, 203, 10.1016/j.memsci.2010.08.016
Yu, 2006, Flux enhancement for polypropylene microporous membrane in a SMBR by the immobilization of poly(N-vinyl-2-pyrrolidone) on the membrane surface, J. Membr. Sci., 279, 148, 10.1016/j.memsci.2005.11.046
Davies, 2005, Radical copolymerization of maleic anhydride and substituted styrenes by reversible addition-fragmentation chain transfer (RAFT) polymerization, Polymer, 46, 1739, 10.1016/j.polymer.2004.12.037
Ulbricht, 2005, Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization, Chem. Mater., 17, 2622, 10.1021/cm0485714
You, 2002, Photo-initiated living free radical polymerization in the presence of dibenzyl trithiocarbonate, Macromol. Chem. Phys., 203, 477, 10.1002/1521-3935(20020201)203:3<477::AID-MACP477>3.0.CO;2-M
Moad, 2008, Radical addition-fragmentation chemistry in polymer synthesis, Polymer, 49, 1079, 10.1016/j.polymer.2007.11.020
Favier, 2006, Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process, Macromol. Rapid Commun., 27, 653, 10.1002/marc.200500839
Otsu, 1992, Synthesis of telechelic polymers through radical polymerization with a two-component iniferter system, Eur. Polymer J., 28, 1325, 10.1016/0014-3057(92)90271-3
Moad, 2002, Initiating free radical polymerization, Macromol. Symp., 182, 65, 10.1002/1521-3900(200206)182:1<65::AID-MASY65>3.0.CO;2-E
Gu, 2009, Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR, J. Membr. Sci., 326, 145, 10.1016/j.memsci.2008.09.043
Li, 2008, Polymer-induced generation of anatase TiO2 hollow nanostructures, Micropor. Mesopor. Mater., 112, 641, 10.1016/j.micromeso.2007.10.034
Hong, 2006, Synthesis and surface modification of ZnO nanoparticles, Chem. Eng. J., 119, 71, 10.1016/j.cej.2006.03.003
Yu, 2006, Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid, J. Membr. Sci., 281, 658, 10.1016/j.memsci.2006.04.036
Rjeb, 2000, Polypropylene natural aging studied by X-ray photoelectron spectroscopy, J. Elect. Spectrosc., 107, 221, 10.1016/S0368-2048(00)00121-3
Madaeni, 2007, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation, J. Membr. Sci., 303, 221, 10.1016/j.memsci.2007.07.017
Wang, 2005, Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO suspensions with various light sources, Appl. Catal. B Environ., 57, 223, 10.1016/j.apcatb.2004.11.008
Liu, 2008, Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation, Environ. Sci. Technol., 42, 2342, 10.1021/es070980o