Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa

Chemical Geology - Tập 160 Số 4 - Trang 335-356 - 1999
Robert P. Rapp1, Nobumichi Shimizu2, M. D. Norman3, G.S Applegate4,1
1Department of Geosciences, Center for High Pressure Research and Mineral Physics Institute, State University of New York, Stony Brook, NY, 11794, USA
2Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
3Key Centre for Geochemical Evolution and Metallogeny of Continents, School of Earth Sciences, Macquarie University, Sydney, 2109, Australia
4Department of Geology, Middlebury College, Middlebury, VT, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agee, 1989, Mass balance and phase density constraints on early differentiation of chondrititc mantle, Earth Planet. Sci. Lett., 90, 144, 10.1016/0012-821X(88)90097-0

Defant, 1990, Derivation of some modern arc magmas by partial melting of young subducted lithosphere, Nature, 347, 662, 10.1038/347662a0

Defant, 1991, Dacite genesis via both slab melting and differentiation: petrogenesis of La Yegueda volcanic complex, Panama, J. Petrology, 32, 1101, 10.1093/petrology/32.6.1101

Forsyth, 1975, Fault plane solution and tectonics of the South Atlantic and Scotia Sea, J. Geophys. Res., 80, 1429, 10.1029/JB080i011p01429

Green, 1994, Experimental studies of trace-element partitioning applicable to igneous petrogenesis — Sedona, 16 years later, Chem. Geol., 117, 1, 10.1016/0009-2541(94)90119-8

Harper, 1984, The Jospephine ophiolite, northwestern California, Geol. Soc. Am. Bull., 95, 1009, 10.1130/0016-7606(1984)95<1009:TJONC>2.0.CO;2

Hirose, 1997, Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts, Geology, 25, 42, 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2

Johnston, 1989, The system tonalite–peridotite–H2O at 30 kbar, with applications to hybridization in subduction zone magmatism, Contrib. Mineral. Petrol., 102, 257, 10.1007/BF00373719

Kelemen, 1995, Genesis of high Mg# andesites and the continental crust, Contrib. Mineral. Petrol., 120, 1, 10.1007/BF00311004

Kepezhinskas, 1995, Na metasomatism in the island-arc mantle by slab melt–peridotite interaction: evidence from mantle xenoliths in the North Kamchatkan Arc, J. Petrol., 36, 1505

Klein, 1997, Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study, Chem. Geol., 138, 257, 10.1016/S0009-2541(97)00019-3

Morris, 1995, Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan, Geology, 23, 395, 10.1130/0091-7613(1995)023<0395:SMAAEO>2.3.CO;2

Norman, 1996, Quantitative analysis of trace elements in geological materials by laser-ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses, Geostandards Newsletter, 20, 247, 10.1111/j.1751-908X.1996.tb00186.x

Norman, 1998, Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser-ablation ICPMS, solution ICPMS, proton microprobe, and electron microprobe data, J. Anal. At. Spectrosc., 13, 477, 10.1039/A707972I

Peacock, 1994, Partial melting of subducting oceanic crust, Earth Planet. Sci. Lett., 121, 227, 10.1016/0012-821X(94)90042-6

Petford, 1996, Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru, J. Petrol., 37, 1491, 10.1093/petrology/37.6.1491

Rapp, 1995, The amphibole-out phase boundary in partially melted metabasalt, and its control over melt fraction and composition, and source permeability, J. Geophys. Res., 100, 15601, 10.1029/95JB00913

Rapp, 1995, Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling, J. Petrol., 36, 891, 10.1093/petrology/36.4.891

Ryerson, 1987, Rutile saturation in magmas: implications for Ti–Nb–Ta depletion in island-arc basalts, Earth Planet. sci. Lett., 86, 225, 10.1016/0012-821X(87)90223-8

Sajona, 1994, Magmatic response to abrupt changes in geodynamic settings: Pliocene–Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines), Tectonophysics, 237, 47, 10.1016/0040-1951(94)90158-9

Schiano, 1995, Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 377, 595, 10.1038/377595a0

Sekine, 1982, synthetic systems for modeling hybridization between hydrous siliceous magmas and peridotite in subduction zones, J. Geol., 90, 734, 10.1086/628728

Sekine, 1982, The system granite–peridotite–H2O at 30 kbar, with applications to hybridization in subduction zone magmatism, Contrib. Mineral. Petrol., 81, 190, 10.1007/BF00371296

Sen, 1994, Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites, Contrib. Mineral. Petrol., 117, 394, 10.1007/BF00307273

Sen, 1994, Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite, Contrib. Mineral. Petrol., 119, 422, 10.1007/BF00286939

Shimizu, 1982, Applications of the ion microprobe to geochemistry and cosmochemistry, Annu. Rev. Earth Planet. Sci., 10, 483, 10.1146/annurev.ea.10.050182.002411

Sims, 1988, Elemental concentrations in Japanese silicate rock standards: a comparison with the literature, Geostandards Newsletter, 12, 379, 10.1111/j.1751-908X.1988.tb00057.x

Stern, 1996, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contrib. Mineral. Petrol., 123, 263, 10.1007/s004100050155

Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Blackwell, Oxford, UK, pp. 313–346.

Takahashi, 1986, Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91, 9367, 10.1029/JB091iB09p09367

Tatsumi, 1982, Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan: II. Melting phase relations at high pressures, Earth Planet. Sci. Lett., 60, 305, 10.1016/0012-821X(82)90009-7

Tatsumi, 1982, Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan: I. Petrographical and chemical characteristics, Earth Planet. Sci. Lett., 60, 293, 10.1016/0012-821X(82)90008-5

Walker, 1990, Some simplifications to multi-anvil devices for high pressure experiments, Am. Mineral., 75, 1020

Watson, 1983, Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types, Earth Planet. Sci. Lett., 64, 295, 10.1016/0012-821X(83)90211-X

Winther, 1994, An experimentally-based model for the origin of tonalitic and trondhjemitic melts, Chem. Geol., 127, 43, 10.1016/0009-2541(95)00087-9

Winther, 1991, Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons, Bull. Geol. Soc. Denmark, 39, 213, 10.37570/bgsd-1991-39-10

Wolf, 1994, Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time, Contrib. Mineral. Petrol., 115, 369, 10.1007/BF00320972

Yogodzinski, 1994, Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far Western Aleutians, J. Petrol., 35, 163, 10.1093/petrology/35.1.163

Yogodzinski, 1995, Magnesian andesites in the western Aleutian Komandorsky region: implications for slab melting and metasomatic processes in the mantle wedge, Geol. Soc. Am. Bull., 107, 505, 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2

Zhang, 1994, Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa, J. Geophys. Res., 99, 17729, 10.1029/94JB01406