Quantum Gravity on a Quantum Computer?
Tóm tắt
EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the study of quantum gravity.
Tài liệu tham khảo
Gibbons, G., Hawking, S.W.: Euclidean Quantum Gravity. World Scientific, Singapore (1993)
Rovelli, C.: Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)
Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2007)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)
Rideout, D., Jennewein, T., Amelino-Camelia, G., Demarie, T.F., Higgins, B.L., Kempf, A., Kent, A., Laflamme, R., Ma, X., Mann, R.B., Martin-Martinez, E., Menicucci, N.C., Moffat, J., Simon, Ch., Sorkin, R., Smolin, L., Terno, D.R.: Class. Quantum Gravity 29, 224011 (2012)
Kempf, A.: Phys. Rev. Lett. 103, 231301 (2009)
Kempf, A.: New J. Phys. 12, 115001 (2010)
Barcelo, C., Liberati, S., Visser, M.: Living Rev. Relativ. 14, 3 (2011)
Weinfurtner, S., Weinfurtner, S., De las Cuevas, G., Martin-Delgado, M.A., Briegel, H.J.: Reducing spacetime to binary information. arXiv:1210.5182
Datchev, K., Hezari, H.: Inverse Problems and Applications: Inside Out II. Math. Sci. Res. Inst. Publ. Series, vol. 60. Cambridge University Press, Cambridge (2012). Section 10
Weyl, H.: Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 1, 110 (1911)
Kac, M.: Am. Math. Mon. 73, 1 (1966)
Srednicki, M.: Phys. Rev. Lett. 71, 666 (1993)
Susskind, L., Lindesay, J.: An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe. World Scientific, Singapore (2005)
Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997)
Aasen, D., Bhamre, T., Kempf, A.: Phys. Rev. Lett. 110, 121301 (2013). arXiv:1212.5297
Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large Scale Structure. Cambridge University Press, Cambridge (2000)
Kempf, A., Martin, R.T.W., Chatwin-Davies, A.: J. Math. Phys. 54, 022301 (2013). arXiv:1210.0750
Landi, G., Rovelli, C.: Phys. Rev. Lett. 78, 3051 (1997)
Weinfurtner, S., de las Cuevas, G., Martin-Delgado, M.A., Briegel, H.J.: arXiv:1210.5182
Hawking, S.W.: Phys. Rev. D 18, 1747 (1978)
Gilkey, P.B.: J. Differ. Geom. 10, 601 (1975)
Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press, Chicago (1949)
Beurling, A.: In: Carleson, L. (ed.) A. Beurling: Collected Works, vol. 2, pp. 341–365. Birkhauser, Boston (1989)
Kempf, A.: Phys. Rev. Lett. 85, 2873 (2000)
Garay, L.: Int. J. Mod. Phys. A 10, 145 (1995)
Hossenfelder, S.: Living Rev. Relativ. 16, 2 (2013)
Kempf, A.: J. Math. Phys. 35, 4483 (1994)
Kempf, A.: Phys. Rev. Lett. 92, 221301 (2004)