Isogeometric collocation methods with generalized B-splines
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Cottrell, 2009
Caseiro, 2015, Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures, Comput. Methods Appl. Mech. Engrg., 284, 861, 10.1016/j.cma.2014.10.037
Elguedj, 2008, B̄ and F̄ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 197, 2732, 10.1016/j.cma.2008.01.012
Morganti, 2015, Patient-specific isogeometric structural analysis of aortic valve closure, Comput. Methods Appl. Mech. Engrg., 284, 508, 10.1016/j.cma.2014.10.010
Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016
Bazilevs, 2010, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 780, 10.1016/j.cma.2008.11.020
Gomez, 2008, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013
Auricchio, 2012, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014
Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004
Schillinger, 2014, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1, 10.1016/j.cma.2014.04.008
Auricchio, 2010, Isogeometic collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Reali, 2015, An introduction to isogeometric collocation methods
Schillinger, 2013, Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026
Gomez, 2014, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, J. Comput. Phys., 262, 153, 10.1016/j.jcp.2013.12.044
De Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037
Reali, 2015, An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623, 10.1016/j.cma.2014.10.027
Beirão da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020
Auricchio, 2013, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113, 10.1016/j.cma.2013.03.009
Kiendl, 2015, Isogeometric collocation methods for the Reissner–Mindlin plate problem, Comput. Methods Appl. Mech. Engrg., 284, 489, 10.1016/j.cma.2014.09.011
Kiendl, 2015, Single-variable formulations and isogeometric discretizations for shear deformable beams, Comput. Methods Appl. Mech. Engrg., 284, 988, 10.1016/j.cma.2014.11.011
Donatelli, 2015, Robust and optimal multi-iterative techniques for IgA collocation linear systems, Comput. Methods Appl. Mech. Engrg., 284, 1120, 10.1016/j.cma.2014.11.036
Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036
Beirão da Veiga, 2012, Analysis-suitable T-splines are dual-compatible, Comput. Methods Appl. Mech. Engrg., 249–252, 42, 10.1016/j.cma.2012.02.025
Li, 2014, Analysis-suitable T-splines: characterization, refineability, and approximation, Math. Models Methods Appl. Sci., 24, 1141, 10.1142/S0218202513500796
Giannelli, 2012, THB-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 485, 10.1016/j.cagd.2012.03.025
Giannelli, 2014, Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput. Math., 40, 459, 10.1007/s10444-013-9315-2
Vuong, 2011, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554, 10.1016/j.cma.2011.09.004
Dokken, 2013, Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 331, 10.1016/j.cagd.2012.12.005
Johannessen, 2014, Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471, 10.1016/j.cma.2013.09.014
Bornemann, 2013, A subdivision-based implementation of the hierarchical B-spline finite element method, Comput. Methods Appl. Mech. Engrg., 253, 584, 10.1016/j.cma.2012.06.023
Jaxon, 2014, Isogeometric analysis on triangulations, Comput. Aided Design, 46, 45, 10.1016/j.cad.2013.08.017
Speleers, 2013, From NURBS to NURPS geometries, Comput. Methods Appl. Mech. Engrg., 255, 238, 10.1016/j.cma.2012.11.012
Speleers, 2012, Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems, Comput. Methods Appl. Mech. Engrg., 221–222, 132, 10.1016/j.cma.2012.02.009
Costantini, 2010, Quasi-interpolation in isogeometric analysis based on generalized B-splines, Comput. Aided Geom. Design, 27, 656, 10.1016/j.cagd.2010.07.004
Manni, 2011, Generalized B-splines as a tool in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 867, 10.1016/j.cma.2010.10.010
Manni, 2014, Local hierarchical h-refinements in IgA based on generalized B-splines, vol. 8177, 341
Bracco, 2014, Trigonometric generalized T-splines, Comput. Methods Appl. Mech. Engrg., 268, 540, 10.1016/j.cma.2013.09.015
Manni, 2011, Isogeometric analysis in advection–diffusion problems: tension splines approximation, J. Comput. Appl. Math., 236, 511, 10.1016/j.cam.2011.05.029
Costantini, 2005, On a class of weak Tchebycheff systems, Numer. Math., 101, 333, 10.1007/s00211-005-0613-6
Kvasov, 1999, GB-splines of arbitrary order, J. Comput. Appl. Math., 104, 63, 10.1016/S0377-0427(98)00265-9
Wang, 2008, Unified and extended form of three types of splines, J. Comput. Appl. Math., 216, 498, 10.1016/j.cam.2007.05.031
de Boor, 2001
Demko, 1985, On the existence of interpolation projectors onto spline spaces, J. Approx. Theory, 43, 151, 10.1016/0021-9045(85)90123-6
Costantini, 2006, Geometric construction of generalized cubic splines, Rend. Mat. Appl., 26, 327
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Hughes, 2014, Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 271, 290, 10.1016/j.cma.2013.11.012
Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006