Surface-Layer Fluxes in Stable Conditions

Springer Science and Business Media LLC - Tập 90 - Trang 495-520 - 1999
J. F. Howell1, J. Sun1
1National Center for Atmospheric Research, Boulder

Tóm tắt

Micrometeorological tower data from the Microfronts experiment are analyzed. Scale-dependencies of the flux and flux sampling error are combined to automatically determine Reynolds turbulence cut-off time scales for computing fluxes from time series. The computed downward heat flux at the 3 m height averaged over nine nights with 7.3 hours each night is 20% greater than the downward heat flux computed at the 10 m height. In contrast, there is only a 1.2% difference between 3 m and 10 m heat fluxes averaged over daytime periods, and there is less than a 2% difference between 3 m and 10 m momentum fluxes whether averaged over nighttime or daytime periods. Stability functions, φM(z/L) and φH(z/L) are extended to z/L up to 10, where z is the observational height and L is the Obukhov length. For 0.01 < z/L < 1 the estimated φ functions generally agree with Businger-Dyer formulations, though the φH estimates include more scatter compared to the φM estimates. For 1 < z/L < 10, the flux intermittency increases, the flux Richardson number exceeds 0.2, and the number of flux samples decreases. Nonetheless the estimates of the stability function φM based on 3-m fluxes are closer to the formula proposed by Beljaars and Holtslag in 1991 while the φM functions based on 10-m fluxes appears to be closer to the formula proposed by Businger et al. in 1971. The stability function φH levels off at z/L = 0.5.

Tài liệu tham khảo

Abdella, K. and McFarlane, N. A.: 1996, ‘Parameterization of the Surface-Layer Exchange Coefficients for Atmospheric Models’, Boundary-Layer Meteorol. 80, 223–248. Beljaars, A. C. M. and Holtslag, A. A. M.: 1991, ‘Flux Parameterization over Land Surfaces for Atmospheric Models’, J. Appl. Meteorol. 30, 327–341. Beylkin, G., Coifman, R., and Rokhlin, V.: 1991, ‘Fast Wavelet Transforms and Numerical Algorithms I’, Comm. Pure Appl. Math. 44, 141–183. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189. Carson, D. J. and Richards, P. J. R.: 1978, ‘Modelling Surface Turbulent Fluxes in Stable Conditions’, Boundary-Layer Meteorol. 14, 67–81. Claussen M.: 1985, ‘A Model of Turbulence Spectra in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 33, 151–172. Coulter, R. L.: 1990, ‘A Case Study of Turbulence in the Stable Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 52, 75–91. Dias, N. L., Brutsaert, W., and Wesely, M. L.: 1995, ‘Z-less Stratification under Stable Conditions’, Boundary-Layer Meteorol. 75, 175–187. Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372. Einaudi, F. and Finnigan, J. J.: 1993, ‘Wave-Turbulence Dynamics in the Stably Stratified Boundary Layer’, J. Atmos. Sci. 50, 1841–1864. Forrer, J., and Rotach, M.W.: 1997, ‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet’, Boundary-Layer Meteorol. 85, 111–136. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp. Garratt, J. R.: Hess, G. D., Physick, W. L., and Bougeault, P.: 1996, ‘The Atmospheric Boundary Layer — Advances in Knowledge and Application’, Boundary-Layer Meteorol. 78, 9–37. Gerz, T., Schumann, U., and Elghobashi, S. E.: 1989, ‘Direct Numerical Simulation of Stratified Homogeneous Turbulent Shear Flows’, J. Fluid Mech. 200, 563–594. Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971, ‘An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc. 97, 168–180. Hicks, B. B.: 1976, ‘Wind Profile Relationships from Wangara Experiment’, Quart. J. Roy. Meteorol. Soc. 102, 535–551. Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’, Boundary-Layer Meteorol. 42, 55–78. Holt, S. E., Koseff, J. R., and Ferziger, J. H.: 1992, ‘A Numerical Study of the Evolution and Structure of Homogeneous Stably Stratified Sheared Turbulence’, J. Fluid Mech. 237, 499–539. Holtslag, A. A. M. and De Bruin, H. A. R.: 1988, ‘Applied Modeling of the Nighttime Surface Energy Balance over Land’, J. Appl. Meteorol. 27, 689–704. Hopfinger, E. J.: 1987, ‘Turbulence in Stratified Fluids: A Review’, J. Geophys. Res. 92, 5287–5303. Howell, J.F. and Mahrt, L.: 1994, ‘An Adaptive Multiresolution Data Filter: Applications to Turbulence and Climatic Time Series’, J. Atmos. Sci. 51, 2165–2178. Howell, J. F. and Mahrt, L.: 1997, ‘Multiresolution Flux Decomposition’, Boundary-Layer Meteorol. 83, 117–137. Hunt, J. C. R., Kaimal, J. C. and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers’, Quart. J. Roy. Meteorol. Soc. 111, 793–815. Kaltenbach, H.-J., Gerz, T., and Schumann, U.: 1994, ‘Large-Eddy Simulation of Homogeneous Turbulence and Diffusion in Stably Stratified Shear Flow’, J. Fluid Mech. 280, 1–40. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., Williamson, D. L. and Rasch, P. J.: 1996, Description of the NCAR Community Climate Model (CCM3), NCAR/TN-420+STR, National Center for Atmospheric Research, 152 pp. Kim, J. and Mahrt, L.: 1992, ‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary Layer’, Tellus 44A, 381–394. Kondo, J., Kanechika, O., and Yasuda, N.: 1978, ‘Heat and Momentum Transfers under Strong Stability in the Atmospheric Surface Layer’, J. Atmos. Sci. 35, 1012–1021. Lienhard, J. H. and Van Atta, C. W.: 1990, ‘The Decay of Turbulence in Thermally Stratified Flow’, J. Fluid Mech. 210, 57–112. Louis, J. F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202. Mahrt, L.: 1985, ‘Vertical Structure and Turbulence in the Very Stable Boundary Layer’, J. Atmos. Sci. 42, 2333–2349. Mahrt, L., Heald, R. C., Lenschow, D. H., and Stankov, B. B.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247–264. Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216. Rohr, J. J., Itsweire, E. C., Helland, K.N., and Van Atta, C.W.: 1988, ‘Growth and Decay of Turbulence in a Stably Stratified Shear Flow’, J. Fluid Mech. 195, 77–111. Schumann, U.: 1987, ‘The Countergradient Heat Flux in Stratified Turbulent Flows’, Nucl. Engrg. Des. 100, 255–262. Schumann, U. and Gerz, T.: 1995, ‘Turbulent Mixing in Stably Stratified Shear Flows’, J. Appl. Meteorol. 34, 33–48. Sidi, C. and Dalaudier, F.: 1990, ‘Turbulence in the Stratified Atmosphere: Recent Theoretical Developments and Experimental Results’, Adv. Space Res. 10, 25–36. Smedman, A-S., Bergström, H., and Högström, U.: 1995, ‘Spectra, Variances and Length Scales in a Marine Stable Boundary Layer Dominated by a Low Level Jet’, Boundary-Layer Meteorol. 76, 211–232. Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary Layer, Prentice Hall, 317 pp. Sun, J.: 1998, ‘Thermal and Momentum Roughness Lengths’, Boundary-Layer Meteorol., submitted. Stillinger, D. C., Helland, K. N., and Van Atta, C. W.: 1983, ‘Experiment on the Transition of Homogeneous Turbulence to Internal Waves in a Stratified Fluid’, J. Fluid Mech. 131, 91–122. Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, 429 pp. Vickers, D. and Mahrt, L.: 1997, ‘Quality Control and Flux Sampling Problems for Tower and Aircraft Data’, J. Atmos. Oc. Tech. 14, 512–526. Von Mises, R.: 1964, Mathematical Theory of Probability and Statistics, Academic Press, 694 pp. Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability’, Quart. J. Roy. Meteorol. Soc. 96, 67–90. Weber, A. H. and Kurzeja, R. J.: 1991, ‘Nocturnal Planetary Boundary Layer Structure and Turbulence Episodes during the Project STABLE Field Program’, J. Appl. Meteorol. 30, 1117–1133. Yague, C. and Cano, J.: 1994, ‘The Influence of Stratification on Heat and Momentum Turbulent Transfer in Antarctica’ Boundary-Layer Meteorol. 69, 123–136. Yakhot, V. and Orszag, S. A.: 1986, ‘Renormalization Group Analysis of Turbulence I: Basic Theory’ J. Sci. Comput. 1, 3–51. Yamada, T.: 1979, ‘PBL Similarity Profiles Determined from a Level-2 Turbulence-Closure Model’, Boundary-Layer Meteorol. 17, 333–351. Zilitinkevich, S. S. and Chalikov, D. V.: 1968, ‘Determining the Universal Wind-Velocity and Temperature Profiles in the Atmospheric Boundary Layer’, Izv. Atmospheric and Oceanic Physics 4, 294–302 (English version: pp. 165–170).