Image denoising review: From classical to state-of-the-art approaches

Information Fusion - Tập 55 - Trang 220-244 - 2020
Bhawna Goyal1, Ayush Dogra2, Sunil Agrawal1, B.S. Sohi3, Apoorav Sharma1
1UIET, Panjab University, Chandigarh, India
2CBME, IIT Ropar, Punjab, India
3Chandigarh University, Gharuan, Punjab, India

Tài liệu tham khảo

Lebrun, 2012, Secrets of image denoising cuisine, Acta Numer., 21, 475, 10.1017/S0962492912000062 Buades, 2005, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4, 490, 10.1137/040616024 Knaus, 2014, Progressive image denoising, IEEE Trans. Image Process., 23, 3114, 10.1109/TIP.2014.2326771 Yang, 2014, Image denoising using nonsubsampled shearlet transform and twin support vector machines, Neural Netw., 57, 152, 10.1016/j.neunet.2014.06.007 Elad, 2006, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15, 3736, 10.1109/TIP.2006.881969 Shao, 2014, From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms, IEEE Trans. Cybern., 44, 1001, 10.1109/TCYB.2013.2278548 Buades, 2009, A note on multi-image denoising, 1 Gonzalez, 2007, Image processing, Digit. Image Process., 2 Irie, 2008, A model for measurement of noise in CCD digital-video cameras, Meas. Sci. Technol., 19, 10.1088/0957-0233/19/4/045207 Jakeman, 1980, On the statistics of K-distributed noise, J. Phys. A, 13, 31, 10.1088/0305-4470/13/1/006 Yan, 2014, Natural image denoising using evolved local adaptive filters, Signal Process., 103, 36, 10.1016/j.sigpro.2013.11.019 Shapiro, 2001, Stockman Benesty, 2010, Study of the widely linear Wiener filter for noise reduction, 205 Jain, 1989 Pitas, 1990 Yang, 1993, Optimal weighted median filters under structural constraints, 942 Hardie, 1994, Rank conditioned rank selection filters for signal restoration, IEEE Trans. Image Process., 3, 10.1109/83.277900 Perona, 1990, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629, 10.1109/34.56205 Perona, 1987, Scale space and edge detection using anisotropic diffusion, 16 Perona, 1994, Anisotropic diffusion, 73 Tsiotsios, 2013, On the choice of the parameters for anisotropic diffusion in image processing, Pattern Recognit., 46, 1369, 10.1016/j.patcog.2012.11.012 Dogra, 2018, Osseous and digital subtraction angiography image fusion via various enhancement schemes and Laplacian pyramid transformations, Future Gener. Comput. Syst., 82, 149, 10.1016/j.future.2017.12.052 You, 1996, Behavioral analysis of anisotropic diffusion in image processing, IEEE Trans. Image Process., 5, 1539, 10.1109/83.541424 Scherzer, 2000, Relations between regularization and diffusion filtering, J. Math. Imaging Vis., 12, 43, 10.1023/A:1008344608808 Alvarez, 1992, Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM J. Numer. Anal., 29, 845, 10.1137/0729052 Osher, 1990, Feature-oriented image enhancement using shock filters, SIAM J. Numer. Anal., 27, 919, 10.1137/0727053 Vogel, 1996, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17, 227, 10.1137/0917016 Alvarez, 1994, Signal and image restoration using shock filters and anisotropic diffusion, SIAM J. Numer. Anal., 31, 590, 10.1137/0731032 Gilboa, 2002, Forward-and-backward diffusion processes for adaptive image enhancement and denoising, IEEE Trans. Image Process., 11, 689, 10.1109/TIP.2002.800883 Gilboa, 2004, Image enhancement and denoising by complex diffusion processes, IEEE Trans. Pattern Anal. Mach. Intell., 26, 1020, 10.1109/TPAMI.2004.47 Qiu, 2012, A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges, Pattern Recognit. Lett., 33, 319, 10.1016/j.patrec.2011.11.001 Catté, 1992, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29, 182, 10.1137/0729012 Hajiaboli, 2011, An anisotropic fourth-order diffusion filter for image noise removal, Int. J. Comput. Vis., 92, 177, 10.1007/s11263-010-0330-1 Lysaker, 2003, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, 1579, 10.1109/TIP.2003.819229 Hajiaboli, 2009, A self-governing hybrid model for noise removal, 295 Zeng, 2013, Non-linear fourth-order telegraph-diffusion equation for noise removal, IET Image Process., 7, 335, 10.1049/iet-ipr.2012.0155 You, 2000, Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process., 9, 1723, 10.1109/83.869184 Chao, 2010, An improved anisotropic diffusion model for detail-and edge-preserving smoothing, Pattern Recognit. Lett., 31, 2012, 10.1016/j.patrec.2010.06.004 Chen, 2011, Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising, SIAM J. Sci. Comput., 33, 2972, 10.1137/100796066 Xu, 2016, An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation, Signal Process., 119, 80, 10.1016/j.sigpro.2015.07.017 Ghita, 2010, A new GVF-based image enhancement formulation for use in the presence of mixed noise, Pattern Recognit., 43, 2646, 10.1016/j.patcog.2010.02.023 Wang, 2013, Image denoising using modified Perona–Malik model based on directional Laplacian, Signal Process., 93, 2548, 10.1016/j.sigpro.2013.02.020 Rudin, 1992, Nonlinear total variation based noise removal algorithms, Physica D, 60, 259, 10.1016/0167-2789(92)90242-F Chambolle, 2004, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20, 89 Combettes, 2011, Proximal splitting methods in signal processing, 49, 185 Yaroslavsky, 1996 Yaroslavsky, 2012, 9 Tomasi, 1998, Bilateral filtering for gray and color images, 839 Smith, 1997, SUSAN—a new approach to low level image processing, Int. J. Comput. Vis., 23, 45, 10.1023/A:1007963824710 Zhang, 2008, Multiresolution bilateral filtering for image denoising, IEEE Trans. Image Process., 17, 2324, 10.1109/TIP.2008.2006658 Elad, 2002, On the origin of the bilateral filter and ways to improve it, IEEE Trans. Image Process., 11, 1141, 10.1109/TIP.2002.801126 Chaudhury, 2011, Fast O(1) bilateral filtering using trigonometric range kernels, IEEE Trans. Image Process., 20, 3376, 10.1109/TIP.2011.2159234 Chaudhury, 2013, Acceleration of the shiftable O(1) algorithm for bilateral filtering and nonlocal means, IEEE Trans. Image Process., 22, 1291, 10.1109/TIP.2012.2222903 Chaudhury, 2015, Image denoising using optimally weighted bilateral filters: a sure and fast approach, 108 Durand, 2002, Fast bilateral filtering for the display of high-dynamic-range images, 21, 257 Porikli, 2008 Yang, 2009, Real-time O(1) bilateral filtering, 557 Farbman, 2008, Edge-preserving decompositions for multi-scale tone and detail manipulation, 27, 67 Goyal, 2018, A three stage integrated denoising approach for grey scale images, J. Ambient Intell. Humaniz. Comput., 1 Jin, 2012, Improved bilateral filter for suppressing mixed noise in color images, Digit. Signal Process., 22, 903, 10.1016/j.dsp.2012.06.012 Zhang, 2008, Multiresolution bilateral filtering for image denoising, IEEE Trans. Image Process., 17, 2324, 10.1109/TIP.2008.2006658 Shi, 2010, An image denoising method based on multiscale wavelet thresholding and bilateral filtering, Wuhan Univ. J. Nat. Sci., 15, 148, 10.1007/s11859-010-0212-y Peng, 2014, Multispectral image denoising with optimized vector bilateral filter, IEEE Trans. Image Process., 23, 264, 10.1109/TIP.2013.2287612 Yu, 2009, Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain, IEEE Trans. Image Process., 18, 2364, 10.1109/TIP.2009.2026685 He, 2010, Guided image filtering, 1 Zhang, 2013, Two-direction nonlocal model for image denoising, IEEE Trans. Image Process., 22, 408, 10.1109/TIP.2012.2214043 Mahmoudi, 2005, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Process. Lett., 12, 839, 10.1109/LSP.2005.859509 Wang, 2012, Gabor feature based nonlocal means filter for textured image denoising, J. Vis. Commun. Image Represent., 23, 1008, 10.1016/j.jvcir.2012.06.011 Goossens, 2008, An improved non-local denoising algorithm, 143 Xu, 2017, Remote sensing image denoising using patch grouping-based nonlocal means algorithm, IEEE Geosci. Remote Sens. Lett., 14, 2275 Coupé, 2008, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Trans. Med. Imaging, 27, 425, 10.1109/TMI.2007.906087 Tschumperlé, 2009, Non-local image smoothing by applying anisotropic diffusion PDE's in the space of patches, 2957 Grewenig, 2011, Rotationally invariant similarity measures for nonlocal image denoising, J. Vis. Commun. Image Represent., 22, 117, 10.1016/j.jvcir.2010.11.001 Teng, 2016, Adaptive morphological filtering method for structural fusion restoration of hyperspectral images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 655, 10.1109/JSTARS.2015.2468593 Treece, 2016, The bitonic filter: linear filtering in an edge-preserving morphological framework, IEEE Trans. Image Process., 25, 5199, 10.1109/TIP.2016.2605302 Xiong, 1999, A comparative study of DCT-and wavelet-based image coding, IEEE Trans. Circuits Syst. Video Technol., 9, 692, 10.1109/76.780358 Mallat, 1999 Misiti, 1996 Mallat, 1989, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674, 10.1109/34.192463 Chui, 1992, Wavelets: a tutorial in theory and applications Kovacevic, 2000, Wavelet families of increasing order in arbitrary dimensions, IEEE Trans. Image Process., 9, 480, 10.1109/83.826784 Pajares, 2004, A wavelet-based image fusion tutorial, Pattern Recognit., 37, 1855, 10.1016/j.patcog.2004.03.010 Dogra, 2017, Performance comparison of different wavelet families based on bone vessel fusion, Asian J. Pharm., 10 Dogra, 2017, Efficient fusion of osseous and vascular details in wavelet domain, Pattern Recognit. Lett., 94, 189, 10.1016/j.patrec.2017.03.002 Bruni, 2009, A fast computation method for time scale signal denoising, Signal Image Video Process., 3, 63, 10.1007/s11760-008-0060-9 Donoho, 1994, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425, 10.1093/biomet/81.3.425 Donoho, 1995, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41, 613, 10.1109/18.382009 Chang, 2000, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 9, 1532, 10.1109/83.862633 Vidakovic, 1998, Nonlinear wavelet shrinkage with Bayes rules and Bayes factors, J. Am. Stat. Assoc., 93, 173, 10.1080/01621459.1998.10474099 Fathi, 2012, Efficient image denoising method based on a new adaptive wavelet packet thresholding function, IEEE Trans. Image Process., 21, 3981, 10.1109/TIP.2012.2200491 Fodor, 2003, Denoising through wavelet shrinkage: an empirical study, J. Electron. Imaging, 12, 151, 10.1117/1.1525793 Sulochana, 2012, Image denoising using adaptive thresholding in framelet transform domain, Int. J. Adv. Comput. Sci. Appl., 3 Dixit, 2014, A comparative study of wavelet thresholding for image denoising, Int. J. Image Graph. Signal Process., 12, 39, 10.5815/ijigsp.2014.12.06 Donoho, 1995, Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., 90, 1200, 10.1080/01621459.1995.10476626 Donoho, 1994, Threshold selection for wavelet shrinkage of noisy data, 1, A24 Piˇzurica, 2006, Estimating the probability of the presence of a signal of interest in multiresolution single and multiband image denoising, IEEE Trans. Image Process., 15, 654, 10.1109/TIP.2005.863698 Luisier, 2007, A new sure approach to image denoising: interscale orthonormal wavelet thresholding, IEEE Trans. Image Process., 16, 593, 10.1109/TIP.2007.891064 Luisier, 2008, SURE-LET multichannel image denoising: interscale orthonormal wavelet thresholding, IEEE Trans. Image Process., 17, 482, 10.1109/TIP.2008.919370 Chen, 2005, Image denoising using neighbouring wavelet coefficients, Integr. Comput. Aided Eng., 12, 99, 10.3233/ICA-2005-12108 Zhou, 2008, Image denoising using block thresholding, 3, 335 Starck, 2003, Gray and color image contrast enhancement by the curvelet transform, IEEE Trans. Image Process., 12, 706, 10.1109/TIP.2003.813140 Lang, 1996, Noise reduction using an undecimated discrete wavelet transform, IEEE Signal Process. Lett., 3, 10, 10.1109/97.475823 Kingsbury, 1998, The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement, 1 Ding, 2007, Adaptive directional lifting-based wavelet transform for image coding, IEEE Trans. Image Process., 16, 416, 10.1109/TIP.2006.888341 Coifman, 1995, Translation-invariant de-noising, 103, 125 Simoncelli, 1995, The steerable pyramid: a flexible architecture for multi-scale derivative computation, 3, 444 Da Silva, 2013, Adaptive edge-preserving image denoising using wavelet transforms, Pattern Anal. Appl., 16, 567, 10.1007/s10044-012-0266-x Qiu, 2013, LLSURE: local linear SURE-based edge-preserving image filtering, IEEE Trans. Image Process., 22, 80, 10.1109/TIP.2012.2214052 Candes, 1998 Candès, 1999, Ridgelets: a key to higher-dimensional intermittency?, Philos. Trans. R. Soc. Lond. Ser. A, 357, 2495, 10.1098/rsta.1999.0444 Deans, 1983 Do, 2003, The finite ridgelet transform for image representation, IEEE Trans. Image Process., 12, 16, 10.1109/TIP.2002.806252 Bolker, 1987, The finite Radon transform, Contemp. Math., 63, 27, 10.1090/conm/063/876312 Wang, 2010, Wrap-around effect removal finite ridgelet transform for multiscale image denoising, Pattern Recognit., 43, 3693, 10.1016/j.patcog.2010.05.032 Huang, 2016, Adaptive digital ridgelet transform and its application in image denoising, Digit. Signal Process., 52, 45, 10.1016/j.dsp.2016.02.004 Do, 2000, Image denoising using orthonormal finite ridgelet transform, 4119, 831 Starck, 2002, The curvelet transform for image denoising, IEEE Trans. Image Process., 11, 670, 10.1109/TIP.2002.1014998 Chen, 2013, Ionograms denoising via curvelet transform, Adv. Space Res., 52, 1289, 10.1016/j.asr.2013.07.004 Zhang, 2008, Wavelets, ridgelets, and curvelets for Poisson noise removal, IEEE Trans. Image Process., 17, 1093, 10.1109/TIP.2008.924386 Meyer, 1997, Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal., 4, 147, 10.1006/acha.1997.0208 Donoho, 1999, Wedgelets: nearly minimax estimation of edges, Ann. Stat., 27, 859, 10.1214/aos/1018031261 Donoho, 2002, Beamlets and multiscale image analysis, 149 Do, 2005, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Process., 14, 2091, 10.1109/TIP.2005.859376 Do, 2002, Contourlets: a directional multiresolution image representation, 1 Eslami, 2003, The contourlet transform for image denoising using cycle spinning, 2, 1982 Eslami, 2006, Translation-invariant contourlet transform and its application to image denoising, IEEE Trans. Image Process., 15, 3362, 10.1109/TIP.2006.881992 Da Cunha, 2006, The nonsubsampled contourlet transform: theory, design, and applications, IEEE Trans. Image Process., 15, 3089, 10.1109/TIP.2006.877507 Huang, 2008, Adaptive thresholds algorithm of image denoising based on nonsubsampled contourlet transform, 6, 209 Hossain, 2010, LMMSE-based image denoising in nonsubsampled contourlet transform domain, 36 S. Satheesh and K. Prasad, “Medical image denoising using adaptive threshold based on contourlet transform,” arXiv:1103.4907, 2011. Xu, 2010, Ripplet: a new transform for image processing, J. Vis. Commun. Image Represent., 21, 627, 10.1016/j.jvcir.2010.04.002 Gupta, 2014, Ripplet domain non-linear filtering for speckle reduction in ultrasound medical images, Biomed. Signal Process. Control, 10, 79, 10.1016/j.bspc.2014.01.004 Le Pennec, 2003 Kekre, 2010, Iris recognition using texture features extracted from haarlet pyramid, Int. J. Comput. Appl., 11, 1 Smeraldi, 2002, Ranklets: orientation selective non-parametric features applied to face detection, 3, 379 Kaplan, 2006, The morphlet transform: a multiscale representation for diffeomorphisms, 21 Krommweh, 2010, Tetrolet transform: a new adaptive haar wavelet algorithm for sparse image representation, J. Vis. Commun. Image Represent., 21, 364, 10.1016/j.jvcir.2010.02.011 http://www.laurent-duval.eu/siva-wits-where-is-the-starlet.html (Accessed on 23. 11November .2016). Luisier, 2010, Undecimated Haar thresholding for Poisson intensity estimation, 1697 Velisavljevic, 2006, Directionlets: anisotropic multidirectional representation with separable filtering, IEEE Trans. Image Process., 15, 1916, 10.1109/TIP.2006.877076 Sethunadh, 2014, Spatially adaptive image denoising using inter-scale dependence in directionlet domain, IET Image Process., 9, 142, 10.1049/iet-ipr.2014.0112 Liu, 2016, Image denoising with multidirectional shrinkage in directionlet domain, Signal Process., 125, 64, 10.1016/j.sigpro.2016.01.013 Gao, 2013, Directionlet-based denoising of SAR images using a Cauchy model, Signal Process., 93, 1056, 10.1016/j.sigpro.2012.11.028 Easley, 2008, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25, 25, 10.1016/j.acha.2007.09.003 Lim, 2010, The discrete shearlet transform: a new directional transform and compactly supported shearlet frames, IEEE Trans. Image Process., 19, 1166, 10.1109/TIP.2010.2041410 Guo, 2009, Edge analysis and identification using the continuous shearlet transform, Appl. Comput. Harmon. Anal., 27, 24, 10.1016/j.acha.2008.10.004 Jain, 2016, A survey of edge-preserving image denoising methods, Inf. Syst. Front., 18, 159, 10.1007/s10796-014-9527-0 Goyal, 2018, Two-dimensional gray scale image denoising via morphological operations in NSST domain & bitonic filtering, Future Gener. Comput. Syst., 82, 158, 10.1016/j.future.2017.12.034 Hou, 2012, SAR image despeckling based on nonsubsampled shearlet transform, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 809, 10.1109/JSTARS.2012.2196680 Shi, 2014, Translation invariant directional framelet transform combined with Gabor filters for image denoising, IEEE Trans. Image Process., 23, 44, 10.1109/TIP.2013.2285595 Dabov, 2007, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16, 2080, 10.1109/TIP.2007.901238 Portilla, 2003, Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 12, 1338, 10.1109/TIP.2003.818640 Zhang, 2010, Two-stage image denoising by principal component analysis with local pixel grouping, Pattern Recognit., 43, 1531, 10.1016/j.patcog.2009.09.023 Sendur, 2002, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE Trans. Signal Process., 50, 2744, 10.1109/TSP.2002.804091 Sendur, 2002, Bivariate shrinkage with local variance estimation, IEEE Signal Process. Lett., 9, 438, 10.1109/LSP.2002.806054 Moulin, 1999, Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors, IEEE Trans. Inf. Theory, 45, 909, 10.1109/18.761332 Dabov, 2009, BM3D image denoising with shape-adaptive principal component analysis Hou, 2011, Comments on image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 20, 268, 10.1109/TIP.2010.2052281 Yin, 2011, Image denoising with anisotropic bivariate shrinkage, Signal Process., 91, 2078, 10.1016/j.sigpro.2011.03.016 Rabbani, 2009, Wavelet-domain medical image denoising using bivariate laplacian mixture model, IEEE Trans. Biomed. Eng., 56, 2826, 10.1109/TBME.2009.2028876 Yu, 2012, Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity, IEEE Trans. Image Process., 21, 2481, 10.1109/TIP.2011.2176743 Fathi, 2012, Efficient image denoising method based on a new adaptive wavelet packet thresholding function, IEEE Trans. Image Process., 21, 3981, 10.1109/TIP.2012.2200491 Rangarajan, 1995, Markov random field models in image processing, 564 Cao, 2011, Image denoising based on hierarchical Markov random field, Pattern Recognit. Lett., 32, 368, 10.1016/j.patrec.2010.09.017 Chen, 2013, Edge preserving image denoising with a closed form solution, Pattern Recognit., 46, 976, 10.1016/j.patcog.2012.08.014 Zhong, 2013, Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 51, 2260, 10.1109/TGRS.2012.2209656 Ho, 2012, Image denoising using wavelet Bayesian network models, 1105 Sanches, 2008, Medical image noise reduction using the Sylvester–Lyapunov equation, IEEE Trans. Image Process., 17, 1522, 10.1109/TIP.2008.2001398 Wang, 2011, Robust adaptive directional lifting wavelet transform for image denoising, IET Image Process., 5, 249, 10.1049/iet-ipr.2009.0112 Romberg, 1999, Bayesian wavelet-domain image modeling using hidden Markov trees, 1, 158 Malfait, 1997, Wavelet-based image denoising using a Markov random field a priori model, IEEE Trans. Image Process., 6, 549, 10.1109/83.563320 Knaus, 2013, Dual-domain image denoising, 440 Knaus, 2015, Dual-domain filtering, SIAM J. Imaging Sci., 8, 1396, 10.1137/140978879 Rais, 2016 Huang, 2018, Progressive dual-domain filter for enhancing and denoising optical remote-sensing images, IEEE Geosci. Remote Sens. Lett., 15, 759, 10.1109/LGRS.2018.2796604 Wang, 2018, A hybrid model for image denoising combining modified isotropic diffusion model and modified Perona-Malik model, IEEE Access Yu, 2009, Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain, IEEE Trans. Image Process., 18, 2364, 10.1109/TIP.2009.2026685 Al-Marzouqi, 2017, Curvelet transform with learning-based tiling, Signal Process., 53, 24 Zhang, 2016, Image denoising by using PDE and GCV in tetrolet transform domain, Eng. Appl. Artif. Intell., 48, 204, 10.1016/j.engappai.2015.10.008 Gan, 2015, BM3D-based ultrasound image denoising via brushlet thresholding, 667 Bai, 2018, Image denoising via an improved non-local total variation model, J. Eng., 2018, 745, 10.1049/joe.2017.0388 Sutour, 2014, Adaptive regularization of the NL-means: application to image and video denoising, IEEE Trans. Image Process., 23, 3506, 10.1109/TIP.2014.2329448 Easley, 2009, Shearlet-based total variation diffusion for denoising, IEEE Trans. Image Process., 18, 260, 10.1109/TIP.2008.2008070 Shui, 2005, Image denoising algorithm via doubly local wiener filtering with directional windows in wavelet domain, IEEE Signal Process. Lett., 12, 681, 10.1109/LSP.2005.855555 Wang, 2009, Image denoising method based on nonsubsampled contourlet transform and bandelet transform, 1278 Panigrahi, 2018, Curvelet-based multiscale denoising using non-local means & guided image filter, IET Image Process., 12, 909, 10.1049/iet-ipr.2017.0825 Karami, 2015, Band-specific shearlet-based hyperspectral image noise reduction, IEEE Trans. Geosci. Remote Sens., 53, 5054, 10.1109/TGRS.2015.2417098 Candès, 2002, New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction, Signal Process., 82, 1519, 10.1016/S0165-1684(02)00300-6 Durand, 2003, Reconstruction of wavelet coefficients using total variation minimization, SIAM J. Sci. Comput., 24, 1754, 10.1137/S1064827501397792 Shahdoosti, 2018, Combined ripplet and total variation image denoising methods using twin support vector machines, Multimedia Tools Appl., 77, 7013, 10.1007/s11042-017-4618-9 Ma, 2007, Combined curvelet shrinkage and nonlinear anisotropic diffusion, IEEE Trans. Image Process., 16, 2198, 10.1109/TIP.2007.902333 Chen, 2007, Image denoising with complex ridgelets, Pattern Recognit., 40, 578, 10.1016/j.patcog.2006.04.039 Kumar, 2013, Image denoising based on gaussian/bilateral filter and its method noise thresholding, Signal Image Video Process., 6, 1159, 10.1007/s11760-012-0372-7 Kumar, 2013, Image denoising based on non-local means filter and its method noise thresholding, Signal Image Video Process., 7, 1211, 10.1007/s11760-012-0389-y Gao, 2013, Image denoising by non-subsampled shearlet domain multivariate model and its method noise thresholding, Optik, 124, 5756, 10.1016/j.ijleo.2013.04.014 Xu, 2014, A denoising algorithm via wiener filtering in the shearlet domain, Multimedia Tools Appl., 71, 1529, 10.1007/s11042-012-1290-y Elad, 2006, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15, 3736, 10.1109/TIP.2006.881969 Mallat, 1993 Pati, 1993, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, 40 Chen, 2001, Atomic decomposition by basis pursuit, SIAM Rev., 43, 129, 10.1137/S003614450037906X Chatterjee, 2009, Clustering-based denoising with locally learned dictionaries, IEEE Trans. Image Process., 18, 1438, 10.1109/TIP.2009.2018575 Mairal, 2009, Non-local sparse models for image restoration, 2272 Zhu, 2010, Automatic parameter selection for denoising algorithms using a no-reference measure of image content, IEEE Trans. Image Process., 19, 3116, 10.1109/TIP.2010.2052820 Bouboulis, 2010, Adaptive kernel-based image denoising employing semi-parametric regularization, IEEE Trans. Image Process., 19, 1465, 10.1109/TIP.2010.2042995 Chatterjee, 2010, Is denoising dead?, IEEE Trans. Image Process., 19, 895, 10.1109/TIP.2009.2037087 Chatterjee, 2012, Patch-based near-optimal image denoising, IEEE Trans. Image Process., 21, 1635, 10.1109/TIP.2011.2172799 Zhang, 2014, Image restoration using joint statistical modeling in a space-transform domain, IEEE Trans. Circuits Syst. Video Technol., 24, 915, 10.1109/TCSVT.2014.2302380 Talebi, 2014, Global image denoising, IEEE Trans. Image Process., 23, 755, 10.1109/TIP.2013.2293425 Sethunadh, 2014, Spatially adaptive image denoising using inter-scale dependence in directionlet domain, IET Image Process., 9, 142, 10.1049/iet-ipr.2014.0112 Yue, 2015, Image denoising by exploring external and internal correlations, IEEE Trans. Image Process., 24, 1967, 10.1109/TIP.2015.2412373 Galiano, 2018, On a cross-diffusion system arising in image denoising, Comput. Math. Appl., 26, 984, 10.1016/j.camwa.2018.05.035 Papyan, 2016, Multi-scale patch-based image restoration, IEEE Trans. Image Process., 25, 249, 10.1109/TIP.2015.2499698 Feng, 2015, An optimized pixel-wise weighting approach for patch-based image denoising, IEEE Signal Process. Lett., 22, 115, 10.1109/LSP.2014.2350032 Baloch, 2018, Residual correlation regularization based image denoising, IEEE Signal Process. Lett., 25, 298, 10.1109/LSP.2017.2789018 Shahdoosti, 2016, Image denoising using sparse representation classification and non-subsampled shearlet transform, Signal Image Video Process., 10, 1081, 10.1007/s11760-016-0862-0 Ma, 2016, An edge fusion scheme for image denoising based on anisotropic diffusion models, J. Vis. Commun. Image Represent., 40, 406, 10.1016/j.jvcir.2016.06.027 Jevnisek, 2017, Co-occurrence filter, 3816 Wong, 2011, Stochastic image denoising based on Markov-chain Monte Carlo sampling, Signal Process., 91, 2112, 10.1016/j.sigpro.2011.03.021 Xu, 2016, Fully-connected continuous conditional random field with stochastic cliques for dark-spot detection in SAR imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 2882, 10.1109/JSTARS.2016.2531985 Wong, 2012, Monte Carlo despeckling of transrectal ultrasound images of the prostate, Digit. Signal Process., 22, 768, 10.1016/j.dsp.2012.04.006 Li, 2015, QMCTLS: quasi Monte Carlo texture likelihood sampling for despeckling of complex polarimetric SAR images, IEEE Geosci. Remote Sens. Lett., 12, 1566, 10.1109/LGRS.2015.2413299 Xu, 2015, Hyperspectral image denoising using a spatial–spectral Monte Carlo sampling approach, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 3025, 10.1109/JSTARS.2015.2402675 Yang, 2011, A wavelet multiscale denoising algorithm for magnetic resonance (MR) images, Meas. Sci. Technol., 22, 10.1088/0957-0233/22/2/025803 Kumar, 2018, CT image denoising using locally adaptive shrinkage rule in tetrolet domain, J. King Saud Univ.-Comput. Inf. Sci., 30, 41 Jian, 2017, Study on underwater image denoising algorithm based on wavelet transform, 806, 01 Sharmila, 2014, Efficient analysis of hybrid directional lifting technique for satellite image denoising, Signal Image Video Process., 8, 1399, 10.1007/s11760-012-0369-2 Liu, 2017, SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning, IEEE Trans. Geosci. Remote Sens., 55, 2985, 10.1109/TGRS.2017.2657602 Shen, 2018, Improved anscombe transformation and total variation for denoising of lowlight infrared images, Infrared Phys Technol, 93, 192, 10.1016/j.infrared.2018.07.024 https://www.mathworks.com/matlabcentral/fileexchange/67703-image-processing-dataset-for-color-grey-image-fusion–image-blending–image-denoising–enhancement(accessed Accessed on 9. 10October. 2017) Dogra, 2016, Efficient representation of texture details in medical images by fusion of Ripplet and DDCT transformed images, Trop. J. Pharm. Res., 15, 1983, 10.4314/tjpr.v15i9.24 Dogra, 2017, Bone vessel image fusion via generalized Reisz wavelet transform using averaging fusion rule, J. Comput. Sci., 21, 371, 10.1016/j.jocs.2016.10.009 Dogra, 2016, Color and grey scale fusion of osseous and vascular information, J. Comput. Sci., 17, 103, 10.1016/j.jocs.2016.09.003 Dogra, 2016, Osseous and vascular information fusion using various spatial domain filters, Asian J. Res. Chem., 9, 937 Goyal, 2016, Noise reduction in MR brain image via various transform domain schemes, Asian J. Res. Chem., 9, 919 Dogra, 2017, From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications, IEEE Access, 5, 16040, 10.1109/ACCESS.2017.2735865 Yadav, 2017, A review on image fusion methodologies and applications, Res. J. Pharm. Technol., 10, 1239, 10.5958/0974-360X.2017.00221.9 Goyal, 2017, Dual way residue noise thresholding along with feature preservation, Pattern Recognit. Lett., 94, 194, 10.1016/j.patrec.2017.02.017 Dogra, 2018, An efficient image integration algorithm for night mode vision applications, MultimedIS Tools Appl., 1 Dogra, 2017, Current and future orientation of anatomical and functional imaging modality fusion, Biomed. Pharmacol. J., 10, 1661, 10.13005/bpj/1277 Dogra, 2014, CT and MRI brain images registration for clinical applications, J. Cancer Sci. Ther., 6, 018 Dogra, 2014, CT and mri brain images matching using ridgeness correlation, Biomed. Pharmacol. J., 7, 20, 10.13005/bpj/543 R. Kumar, 2010 (https://in.mathworks.com/matlabcentral/fileexchange/28112-diffusion-filtering-for-image-denoising). Dabov, 2007, Joint image sharpening and denoising by 3D transform-domain collaborative filtering, 2007 Shahdoosti, 2019, Edge-preserving image denoising using a deep convolutional neural network, Signal Process., 159, 20, 10.1016/j.sigpro.2019.01.017 Vapnik, 1998, The support vector method of function estimation, 55 Wang, 2010, A new wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine, Expert Syst. Appl., 37, 7040, 10.1016/j.eswa.2010.03.014 Wang, 2013, Image denoising using SVM classification in nonsubsampled contourlet transform domain, Inf. Sci., 246, 155, 10.1016/j.ins.2013.05.028 Balster, 2005, Feature-based wavelet shrinkage algorithm for image denoising, IEEE Trans. Image Process., 14, 2024, 10.1109/TIP.2005.859385 Shahdoosti, 2016, Combination of anisotropic diffusion and non-subsampled shearlet transform for image denoising, J. Intell. Fuzzy Syst., 30, 3087, 10.3233/IFS-152035 Shahdoosti, 2018, A maximum likelihood filter using non-local information for despeckling of ultrasound images, Mach. Vis. Appl., 29, 689, 10.1007/s00138-018-0929-8 Shahdoosti, 2019, A new compressive sensing based image denoising method using block-matching and sparse representations over learned dictionaries, Multimedia Tools Appl., 78, 12561, 10.1007/s11042-018-6818-3 Shahdoosti, 2017, Two-stage image denoising considering interscale and intrascale dependencies, J. Electron. Imaging, 26 Shahdoosti, 2017, Image denoising in dual contourlet domain using hidden Markov tree models, Digit. Signal Process., 67, 17, 10.1016/j.dsp.2017.04.011 Parameswaran, 2016, Patch matching for image denoising using neighborhood-based collaborative filtering, IEEE Trans. Circuits Syst. Video Technol., 28, 392, 10.1109/TCSVT.2016.2610038 Karami, 2017, Image denoising using generalised Cauchy filter, IET Image Process., 11, 767, 10.1049/iet-ipr.2016.0554 Zhao, 2017, Detail-preserving image denoising via adaptive clustering and progressive PCA thresholding, IEEE Access, 6, 6303, 10.1109/ACCESS.2017.2780985 Fedorov, 2017, Affine non-local means image denoising, IEEE Trans. Image Process., 26, 2137, 10.1109/TIP.2017.2681421 Lebrun, 2015, Multiscale image blind denoising, IEEE Trans. Image Process., 24, 3149, 10.1109/TIP.2015.2439041 Guo, 2015, An efficient SVD-based method for image denoising, IEEE Trans. Circuits Syst. Video Technol., 26, 868, 10.1109/TCSVT.2015.2416631 Frosio, 2018, Statistical nearest neighbors for image denoising, IEEE Trans. Image Process., 28, 723, 10.1109/TIP.2018.2869685 Wang, 2019, Seismic data denoising for complex structure using BM3D and local similarity, J. Appl. Geophys., 10.1016/j.jappgeo.2019.04.018 Chen, 2019, Low-resolution palmprint image denoising by generative adversarial networks, Neurocomputing, 358, 275, 10.1016/j.neucom.2019.05.046 Li, 2019, Image denoising via multi-scale gated fusion network, IEEE Access, 7, 49392, 10.1109/ACCESS.2019.2910879 Zheng, 2018, Hyperspectral image denoising by fusing the selected related bands, IEEE Trans. Geosci. Remote Sens., 57, 2596, 10.1109/TGRS.2018.2875304 Liu, 2019, Block matching local SVD operator based sparsity and TV regularization for image denoising, J. Sci. Comput., 78, 607, 10.1007/s10915-018-0785-8 Wang, 2019, Multi-matrices low-rank decomposition with structural smoothness for image denoising, IEEE Trans. Circuits Syst. Video Technol. Jifara, 2019, Medical image denoising using convolutional neural network: a residual learning approach, J. Supercomput., 75, 704, 10.1007/s11227-017-2080-0 Baloch, 2018, Residual correlation regularization based image denoising, IEEE Signal Process. Lett., 25, 298, 10.1109/LSP.2017.2789018 Diwakar, 2018, A review on CT image noise and its denoising, Biomed. Signal Process. Control, 42, 73, 10.1016/j.bspc.2018.01.010 Weiss, 2007, What makes a good model of natural images?, 1 Liu, 2014, Adaptive sparse norm and nonlocal total variation methods for image smoothing, Math. Probl. Eng. Dong, 2012, Nonlocally centralized sparse representation for image restoration, IEEE Trans. Image Process., 22, 1620, 10.1109/TIP.2012.2235847 Takeda, 2008, Deblurring using regularized locally adaptive kernel regression, IEEE Trans. Image Process., 17, 550, 10.1109/TIP.2007.918028 Burger, 2012, Image denoising: can plain neural networks compete with BM3D?, 2392 Deledalle, 2011, Image denoising with patch based PCA: local versus global, 81, 425 Chambolle, 2010, An introduction to total variation for image analysis, Theor. Found. Numer. Methods Sparse Recov., 9, 227