Image denoising review: From classical to state-of-the-art approaches
Tài liệu tham khảo
Lebrun, 2012, Secrets of image denoising cuisine, Acta Numer., 21, 475, 10.1017/S0962492912000062
Buades, 2005, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4, 490, 10.1137/040616024
Knaus, 2014, Progressive image denoising, IEEE Trans. Image Process., 23, 3114, 10.1109/TIP.2014.2326771
Yang, 2014, Image denoising using nonsubsampled shearlet transform and twin support vector machines, Neural Netw., 57, 152, 10.1016/j.neunet.2014.06.007
Elad, 2006, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15, 3736, 10.1109/TIP.2006.881969
Shao, 2014, From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms, IEEE Trans. Cybern., 44, 1001, 10.1109/TCYB.2013.2278548
Buades, 2009, A note on multi-image denoising, 1
Gonzalez, 2007, Image processing, Digit. Image Process., 2
Irie, 2008, A model for measurement of noise in CCD digital-video cameras, Meas. Sci. Technol., 19, 10.1088/0957-0233/19/4/045207
Jakeman, 1980, On the statistics of K-distributed noise, J. Phys. A, 13, 31, 10.1088/0305-4470/13/1/006
Yan, 2014, Natural image denoising using evolved local adaptive filters, Signal Process., 103, 36, 10.1016/j.sigpro.2013.11.019
Shapiro, 2001, Stockman
Benesty, 2010, Study of the widely linear Wiener filter for noise reduction, 205
Jain, 1989
Pitas, 1990
Yang, 1993, Optimal weighted median filters under structural constraints, 942
Hardie, 1994, Rank conditioned rank selection filters for signal restoration, IEEE Trans. Image Process., 3, 10.1109/83.277900
Perona, 1990, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629, 10.1109/34.56205
Perona, 1987, Scale space and edge detection using anisotropic diffusion, 16
Perona, 1994, Anisotropic diffusion, 73
Tsiotsios, 2013, On the choice of the parameters for anisotropic diffusion in image processing, Pattern Recognit., 46, 1369, 10.1016/j.patcog.2012.11.012
Dogra, 2018, Osseous and digital subtraction angiography image fusion via various enhancement schemes and Laplacian pyramid transformations, Future Gener. Comput. Syst., 82, 149, 10.1016/j.future.2017.12.052
You, 1996, Behavioral analysis of anisotropic diffusion in image processing, IEEE Trans. Image Process., 5, 1539, 10.1109/83.541424
Scherzer, 2000, Relations between regularization and diffusion filtering, J. Math. Imaging Vis., 12, 43, 10.1023/A:1008344608808
Alvarez, 1992, Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM J. Numer. Anal., 29, 845, 10.1137/0729052
Osher, 1990, Feature-oriented image enhancement using shock filters, SIAM J. Numer. Anal., 27, 919, 10.1137/0727053
Vogel, 1996, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17, 227, 10.1137/0917016
Alvarez, 1994, Signal and image restoration using shock filters and anisotropic diffusion, SIAM J. Numer. Anal., 31, 590, 10.1137/0731032
Gilboa, 2002, Forward-and-backward diffusion processes for adaptive image enhancement and denoising, IEEE Trans. Image Process., 11, 689, 10.1109/TIP.2002.800883
Gilboa, 2004, Image enhancement and denoising by complex diffusion processes, IEEE Trans. Pattern Anal. Mach. Intell., 26, 1020, 10.1109/TPAMI.2004.47
Qiu, 2012, A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges, Pattern Recognit. Lett., 33, 319, 10.1016/j.patrec.2011.11.001
Catté, 1992, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29, 182, 10.1137/0729012
Hajiaboli, 2011, An anisotropic fourth-order diffusion filter for image noise removal, Int. J. Comput. Vis., 92, 177, 10.1007/s11263-010-0330-1
Lysaker, 2003, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, 1579, 10.1109/TIP.2003.819229
Hajiaboli, 2009, A self-governing hybrid model for noise removal, 295
Zeng, 2013, Non-linear fourth-order telegraph-diffusion equation for noise removal, IET Image Process., 7, 335, 10.1049/iet-ipr.2012.0155
You, 2000, Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process., 9, 1723, 10.1109/83.869184
Chao, 2010, An improved anisotropic diffusion model for detail-and edge-preserving smoothing, Pattern Recognit. Lett., 31, 2012, 10.1016/j.patrec.2010.06.004
Chen, 2011, Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising, SIAM J. Sci. Comput., 33, 2972, 10.1137/100796066
Xu, 2016, An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation, Signal Process., 119, 80, 10.1016/j.sigpro.2015.07.017
Ghita, 2010, A new GVF-based image enhancement formulation for use in the presence of mixed noise, Pattern Recognit., 43, 2646, 10.1016/j.patcog.2010.02.023
Wang, 2013, Image denoising using modified Perona–Malik model based on directional Laplacian, Signal Process., 93, 2548, 10.1016/j.sigpro.2013.02.020
Rudin, 1992, Nonlinear total variation based noise removal algorithms, Physica D, 60, 259, 10.1016/0167-2789(92)90242-F
Chambolle, 2004, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20, 89
Combettes, 2011, Proximal splitting methods in signal processing, 49, 185
Yaroslavsky, 1996
Yaroslavsky, 2012, 9
Tomasi, 1998, Bilateral filtering for gray and color images, 839
Smith, 1997, SUSAN—a new approach to low level image processing, Int. J. Comput. Vis., 23, 45, 10.1023/A:1007963824710
Zhang, 2008, Multiresolution bilateral filtering for image denoising, IEEE Trans. Image Process., 17, 2324, 10.1109/TIP.2008.2006658
Elad, 2002, On the origin of the bilateral filter and ways to improve it, IEEE Trans. Image Process., 11, 1141, 10.1109/TIP.2002.801126
Chaudhury, 2011, Fast O(1) bilateral filtering using trigonometric range kernels, IEEE Trans. Image Process., 20, 3376, 10.1109/TIP.2011.2159234
Chaudhury, 2013, Acceleration of the shiftable O(1) algorithm for bilateral filtering and nonlocal means, IEEE Trans. Image Process., 22, 1291, 10.1109/TIP.2012.2222903
Chaudhury, 2015, Image denoising using optimally weighted bilateral filters: a sure and fast approach, 108
Durand, 2002, Fast bilateral filtering for the display of high-dynamic-range images, 21, 257
Porikli, 2008
Yang, 2009, Real-time O(1) bilateral filtering, 557
Farbman, 2008, Edge-preserving decompositions for multi-scale tone and detail manipulation, 27, 67
Goyal, 2018, A three stage integrated denoising approach for grey scale images, J. Ambient Intell. Humaniz. Comput., 1
Jin, 2012, Improved bilateral filter for suppressing mixed noise in color images, Digit. Signal Process., 22, 903, 10.1016/j.dsp.2012.06.012
Zhang, 2008, Multiresolution bilateral filtering for image denoising, IEEE Trans. Image Process., 17, 2324, 10.1109/TIP.2008.2006658
Shi, 2010, An image denoising method based on multiscale wavelet thresholding and bilateral filtering, Wuhan Univ. J. Nat. Sci., 15, 148, 10.1007/s11859-010-0212-y
Peng, 2014, Multispectral image denoising with optimized vector bilateral filter, IEEE Trans. Image Process., 23, 264, 10.1109/TIP.2013.2287612
Yu, 2009, Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain, IEEE Trans. Image Process., 18, 2364, 10.1109/TIP.2009.2026685
He, 2010, Guided image filtering, 1
Zhang, 2013, Two-direction nonlocal model for image denoising, IEEE Trans. Image Process., 22, 408, 10.1109/TIP.2012.2214043
Mahmoudi, 2005, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Process. Lett., 12, 839, 10.1109/LSP.2005.859509
Wang, 2012, Gabor feature based nonlocal means filter for textured image denoising, J. Vis. Commun. Image Represent., 23, 1008, 10.1016/j.jvcir.2012.06.011
Goossens, 2008, An improved non-local denoising algorithm, 143
Xu, 2017, Remote sensing image denoising using patch grouping-based nonlocal means algorithm, IEEE Geosci. Remote Sens. Lett., 14, 2275
Coupé, 2008, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Trans. Med. Imaging, 27, 425, 10.1109/TMI.2007.906087
Tschumperlé, 2009, Non-local image smoothing by applying anisotropic diffusion PDE's in the space of patches, 2957
Grewenig, 2011, Rotationally invariant similarity measures for nonlocal image denoising, J. Vis. Commun. Image Represent., 22, 117, 10.1016/j.jvcir.2010.11.001
Teng, 2016, Adaptive morphological filtering method for structural fusion restoration of hyperspectral images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 655, 10.1109/JSTARS.2015.2468593
Treece, 2016, The bitonic filter: linear filtering in an edge-preserving morphological framework, IEEE Trans. Image Process., 25, 5199, 10.1109/TIP.2016.2605302
Xiong, 1999, A comparative study of DCT-and wavelet-based image coding, IEEE Trans. Circuits Syst. Video Technol., 9, 692, 10.1109/76.780358
Mallat, 1999
Misiti, 1996
Mallat, 1989, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674, 10.1109/34.192463
Chui, 1992, Wavelets: a tutorial in theory and applications
Kovacevic, 2000, Wavelet families of increasing order in arbitrary dimensions, IEEE Trans. Image Process., 9, 480, 10.1109/83.826784
Pajares, 2004, A wavelet-based image fusion tutorial, Pattern Recognit., 37, 1855, 10.1016/j.patcog.2004.03.010
Dogra, 2017, Performance comparison of different wavelet families based on bone vessel fusion, Asian J. Pharm., 10
Dogra, 2017, Efficient fusion of osseous and vascular details in wavelet domain, Pattern Recognit. Lett., 94, 189, 10.1016/j.patrec.2017.03.002
Bruni, 2009, A fast computation method for time scale signal denoising, Signal Image Video Process., 3, 63, 10.1007/s11760-008-0060-9
Donoho, 1994, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425, 10.1093/biomet/81.3.425
Donoho, 1995, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41, 613, 10.1109/18.382009
Chang, 2000, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 9, 1532, 10.1109/83.862633
Vidakovic, 1998, Nonlinear wavelet shrinkage with Bayes rules and Bayes factors, J. Am. Stat. Assoc., 93, 173, 10.1080/01621459.1998.10474099
Fathi, 2012, Efficient image denoising method based on a new adaptive wavelet packet thresholding function, IEEE Trans. Image Process., 21, 3981, 10.1109/TIP.2012.2200491
Fodor, 2003, Denoising through wavelet shrinkage: an empirical study, J. Electron. Imaging, 12, 151, 10.1117/1.1525793
Sulochana, 2012, Image denoising using adaptive thresholding in framelet transform domain, Int. J. Adv. Comput. Sci. Appl., 3
Dixit, 2014, A comparative study of wavelet thresholding for image denoising, Int. J. Image Graph. Signal Process., 12, 39, 10.5815/ijigsp.2014.12.06
Donoho, 1995, Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., 90, 1200, 10.1080/01621459.1995.10476626
Donoho, 1994, Threshold selection for wavelet shrinkage of noisy data, 1, A24
Piˇzurica, 2006, Estimating the probability of the presence of a signal of interest in multiresolution single and multiband image denoising, IEEE Trans. Image Process., 15, 654, 10.1109/TIP.2005.863698
Luisier, 2007, A new sure approach to image denoising: interscale orthonormal wavelet thresholding, IEEE Trans. Image Process., 16, 593, 10.1109/TIP.2007.891064
Luisier, 2008, SURE-LET multichannel image denoising: interscale orthonormal wavelet thresholding, IEEE Trans. Image Process., 17, 482, 10.1109/TIP.2008.919370
Chen, 2005, Image denoising using neighbouring wavelet coefficients, Integr. Comput. Aided Eng., 12, 99, 10.3233/ICA-2005-12108
Zhou, 2008, Image denoising using block thresholding, 3, 335
Starck, 2003, Gray and color image contrast enhancement by the curvelet transform, IEEE Trans. Image Process., 12, 706, 10.1109/TIP.2003.813140
Lang, 1996, Noise reduction using an undecimated discrete wavelet transform, IEEE Signal Process. Lett., 3, 10, 10.1109/97.475823
Kingsbury, 1998, The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement, 1
Ding, 2007, Adaptive directional lifting-based wavelet transform for image coding, IEEE Trans. Image Process., 16, 416, 10.1109/TIP.2006.888341
Coifman, 1995, Translation-invariant de-noising, 103, 125
Simoncelli, 1995, The steerable pyramid: a flexible architecture for multi-scale derivative computation, 3, 444
Da Silva, 2013, Adaptive edge-preserving image denoising using wavelet transforms, Pattern Anal. Appl., 16, 567, 10.1007/s10044-012-0266-x
Qiu, 2013, LLSURE: local linear SURE-based edge-preserving image filtering, IEEE Trans. Image Process., 22, 80, 10.1109/TIP.2012.2214052
Candes, 1998
Candès, 1999, Ridgelets: a key to higher-dimensional intermittency?, Philos. Trans. R. Soc. Lond. Ser. A, 357, 2495, 10.1098/rsta.1999.0444
Deans, 1983
Do, 2003, The finite ridgelet transform for image representation, IEEE Trans. Image Process., 12, 16, 10.1109/TIP.2002.806252
Bolker, 1987, The finite Radon transform, Contemp. Math., 63, 27, 10.1090/conm/063/876312
Wang, 2010, Wrap-around effect removal finite ridgelet transform for multiscale image denoising, Pattern Recognit., 43, 3693, 10.1016/j.patcog.2010.05.032
Huang, 2016, Adaptive digital ridgelet transform and its application in image denoising, Digit. Signal Process., 52, 45, 10.1016/j.dsp.2016.02.004
Do, 2000, Image denoising using orthonormal finite ridgelet transform, 4119, 831
Starck, 2002, The curvelet transform for image denoising, IEEE Trans. Image Process., 11, 670, 10.1109/TIP.2002.1014998
Chen, 2013, Ionograms denoising via curvelet transform, Adv. Space Res., 52, 1289, 10.1016/j.asr.2013.07.004
Zhang, 2008, Wavelets, ridgelets, and curvelets for Poisson noise removal, IEEE Trans. Image Process., 17, 1093, 10.1109/TIP.2008.924386
Meyer, 1997, Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal., 4, 147, 10.1006/acha.1997.0208
Donoho, 1999, Wedgelets: nearly minimax estimation of edges, Ann. Stat., 27, 859, 10.1214/aos/1018031261
Donoho, 2002, Beamlets and multiscale image analysis, 149
Do, 2005, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Process., 14, 2091, 10.1109/TIP.2005.859376
Do, 2002, Contourlets: a directional multiresolution image representation, 1
Eslami, 2003, The contourlet transform for image denoising using cycle spinning, 2, 1982
Eslami, 2006, Translation-invariant contourlet transform and its application to image denoising, IEEE Trans. Image Process., 15, 3362, 10.1109/TIP.2006.881992
Da Cunha, 2006, The nonsubsampled contourlet transform: theory, design, and applications, IEEE Trans. Image Process., 15, 3089, 10.1109/TIP.2006.877507
Huang, 2008, Adaptive thresholds algorithm of image denoising based on nonsubsampled contourlet transform, 6, 209
Hossain, 2010, LMMSE-based image denoising in nonsubsampled contourlet transform domain, 36
S. Satheesh and K. Prasad, “Medical image denoising using adaptive threshold based on contourlet transform,” arXiv:1103.4907, 2011.
Xu, 2010, Ripplet: a new transform for image processing, J. Vis. Commun. Image Represent., 21, 627, 10.1016/j.jvcir.2010.04.002
Gupta, 2014, Ripplet domain non-linear filtering for speckle reduction in ultrasound medical images, Biomed. Signal Process. Control, 10, 79, 10.1016/j.bspc.2014.01.004
Le Pennec, 2003
Kekre, 2010, Iris recognition using texture features extracted from haarlet pyramid, Int. J. Comput. Appl., 11, 1
Smeraldi, 2002, Ranklets: orientation selective non-parametric features applied to face detection, 3, 379
Kaplan, 2006, The morphlet transform: a multiscale representation for diffeomorphisms, 21
Krommweh, 2010, Tetrolet transform: a new adaptive haar wavelet algorithm for sparse image representation, J. Vis. Commun. Image Represent., 21, 364, 10.1016/j.jvcir.2010.02.011
http://www.laurent-duval.eu/siva-wits-where-is-the-starlet.html (Accessed on 23. 11November .2016).
Luisier, 2010, Undecimated Haar thresholding for Poisson intensity estimation, 1697
Velisavljevic, 2006, Directionlets: anisotropic multidirectional representation with separable filtering, IEEE Trans. Image Process., 15, 1916, 10.1109/TIP.2006.877076
Sethunadh, 2014, Spatially adaptive image denoising using inter-scale dependence in directionlet domain, IET Image Process., 9, 142, 10.1049/iet-ipr.2014.0112
Liu, 2016, Image denoising with multidirectional shrinkage in directionlet domain, Signal Process., 125, 64, 10.1016/j.sigpro.2016.01.013
Gao, 2013, Directionlet-based denoising of SAR images using a Cauchy model, Signal Process., 93, 1056, 10.1016/j.sigpro.2012.11.028
Easley, 2008, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25, 25, 10.1016/j.acha.2007.09.003
Lim, 2010, The discrete shearlet transform: a new directional transform and compactly supported shearlet frames, IEEE Trans. Image Process., 19, 1166, 10.1109/TIP.2010.2041410
Guo, 2009, Edge analysis and identification using the continuous shearlet transform, Appl. Comput. Harmon. Anal., 27, 24, 10.1016/j.acha.2008.10.004
Jain, 2016, A survey of edge-preserving image denoising methods, Inf. Syst. Front., 18, 159, 10.1007/s10796-014-9527-0
Goyal, 2018, Two-dimensional gray scale image denoising via morphological operations in NSST domain & bitonic filtering, Future Gener. Comput. Syst., 82, 158, 10.1016/j.future.2017.12.034
Hou, 2012, SAR image despeckling based on nonsubsampled shearlet transform, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 809, 10.1109/JSTARS.2012.2196680
Shi, 2014, Translation invariant directional framelet transform combined with Gabor filters for image denoising, IEEE Trans. Image Process., 23, 44, 10.1109/TIP.2013.2285595
Dabov, 2007, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16, 2080, 10.1109/TIP.2007.901238
Portilla, 2003, Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 12, 1338, 10.1109/TIP.2003.818640
Zhang, 2010, Two-stage image denoising by principal component analysis with local pixel grouping, Pattern Recognit., 43, 1531, 10.1016/j.patcog.2009.09.023
Sendur, 2002, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE Trans. Signal Process., 50, 2744, 10.1109/TSP.2002.804091
Sendur, 2002, Bivariate shrinkage with local variance estimation, IEEE Signal Process. Lett., 9, 438, 10.1109/LSP.2002.806054
Moulin, 1999, Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors, IEEE Trans. Inf. Theory, 45, 909, 10.1109/18.761332
Dabov, 2009, BM3D image denoising with shape-adaptive principal component analysis
Hou, 2011, Comments on image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 20, 268, 10.1109/TIP.2010.2052281
Yin, 2011, Image denoising with anisotropic bivariate shrinkage, Signal Process., 91, 2078, 10.1016/j.sigpro.2011.03.016
Rabbani, 2009, Wavelet-domain medical image denoising using bivariate laplacian mixture model, IEEE Trans. Biomed. Eng., 56, 2826, 10.1109/TBME.2009.2028876
Yu, 2012, Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity, IEEE Trans. Image Process., 21, 2481, 10.1109/TIP.2011.2176743
Fathi, 2012, Efficient image denoising method based on a new adaptive wavelet packet thresholding function, IEEE Trans. Image Process., 21, 3981, 10.1109/TIP.2012.2200491
Rangarajan, 1995, Markov random field models in image processing, 564
Cao, 2011, Image denoising based on hierarchical Markov random field, Pattern Recognit. Lett., 32, 368, 10.1016/j.patrec.2010.09.017
Chen, 2013, Edge preserving image denoising with a closed form solution, Pattern Recognit., 46, 976, 10.1016/j.patcog.2012.08.014
Zhong, 2013, Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 51, 2260, 10.1109/TGRS.2012.2209656
Ho, 2012, Image denoising using wavelet Bayesian network models, 1105
Sanches, 2008, Medical image noise reduction using the Sylvester–Lyapunov equation, IEEE Trans. Image Process., 17, 1522, 10.1109/TIP.2008.2001398
Wang, 2011, Robust adaptive directional lifting wavelet transform for image denoising, IET Image Process., 5, 249, 10.1049/iet-ipr.2009.0112
Romberg, 1999, Bayesian wavelet-domain image modeling using hidden Markov trees, 1, 158
Malfait, 1997, Wavelet-based image denoising using a Markov random field a priori model, IEEE Trans. Image Process., 6, 549, 10.1109/83.563320
Knaus, 2013, Dual-domain image denoising, 440
Knaus, 2015, Dual-domain filtering, SIAM J. Imaging Sci., 8, 1396, 10.1137/140978879
Rais, 2016
Huang, 2018, Progressive dual-domain filter for enhancing and denoising optical remote-sensing images, IEEE Geosci. Remote Sens. Lett., 15, 759, 10.1109/LGRS.2018.2796604
Wang, 2018, A hybrid model for image denoising combining modified isotropic diffusion model and modified Perona-Malik model, IEEE Access
Yu, 2009, Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain, IEEE Trans. Image Process., 18, 2364, 10.1109/TIP.2009.2026685
Al-Marzouqi, 2017, Curvelet transform with learning-based tiling, Signal Process., 53, 24
Zhang, 2016, Image denoising by using PDE and GCV in tetrolet transform domain, Eng. Appl. Artif. Intell., 48, 204, 10.1016/j.engappai.2015.10.008
Gan, 2015, BM3D-based ultrasound image denoising via brushlet thresholding, 667
Bai, 2018, Image denoising via an improved non-local total variation model, J. Eng., 2018, 745, 10.1049/joe.2017.0388
Sutour, 2014, Adaptive regularization of the NL-means: application to image and video denoising, IEEE Trans. Image Process., 23, 3506, 10.1109/TIP.2014.2329448
Easley, 2009, Shearlet-based total variation diffusion for denoising, IEEE Trans. Image Process., 18, 260, 10.1109/TIP.2008.2008070
Shui, 2005, Image denoising algorithm via doubly local wiener filtering with directional windows in wavelet domain, IEEE Signal Process. Lett., 12, 681, 10.1109/LSP.2005.855555
Wang, 2009, Image denoising method based on nonsubsampled contourlet transform and bandelet transform, 1278
Panigrahi, 2018, Curvelet-based multiscale denoising using non-local means & guided image filter, IET Image Process., 12, 909, 10.1049/iet-ipr.2017.0825
Karami, 2015, Band-specific shearlet-based hyperspectral image noise reduction, IEEE Trans. Geosci. Remote Sens., 53, 5054, 10.1109/TGRS.2015.2417098
Candès, 2002, New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction, Signal Process., 82, 1519, 10.1016/S0165-1684(02)00300-6
Durand, 2003, Reconstruction of wavelet coefficients using total variation minimization, SIAM J. Sci. Comput., 24, 1754, 10.1137/S1064827501397792
Shahdoosti, 2018, Combined ripplet and total variation image denoising methods using twin support vector machines, Multimedia Tools Appl., 77, 7013, 10.1007/s11042-017-4618-9
Ma, 2007, Combined curvelet shrinkage and nonlinear anisotropic diffusion, IEEE Trans. Image Process., 16, 2198, 10.1109/TIP.2007.902333
Chen, 2007, Image denoising with complex ridgelets, Pattern Recognit., 40, 578, 10.1016/j.patcog.2006.04.039
Kumar, 2013, Image denoising based on gaussian/bilateral filter and its method noise thresholding, Signal Image Video Process., 6, 1159, 10.1007/s11760-012-0372-7
Kumar, 2013, Image denoising based on non-local means filter and its method noise thresholding, Signal Image Video Process., 7, 1211, 10.1007/s11760-012-0389-y
Gao, 2013, Image denoising by non-subsampled shearlet domain multivariate model and its method noise thresholding, Optik, 124, 5756, 10.1016/j.ijleo.2013.04.014
Xu, 2014, A denoising algorithm via wiener filtering in the shearlet domain, Multimedia Tools Appl., 71, 1529, 10.1007/s11042-012-1290-y
Elad, 2006, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15, 3736, 10.1109/TIP.2006.881969
Mallat, 1993
Pati, 1993, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, 40
Chen, 2001, Atomic decomposition by basis pursuit, SIAM Rev., 43, 129, 10.1137/S003614450037906X
Chatterjee, 2009, Clustering-based denoising with locally learned dictionaries, IEEE Trans. Image Process., 18, 1438, 10.1109/TIP.2009.2018575
Mairal, 2009, Non-local sparse models for image restoration, 2272
Zhu, 2010, Automatic parameter selection for denoising algorithms using a no-reference measure of image content, IEEE Trans. Image Process., 19, 3116, 10.1109/TIP.2010.2052820
Bouboulis, 2010, Adaptive kernel-based image denoising employing semi-parametric regularization, IEEE Trans. Image Process., 19, 1465, 10.1109/TIP.2010.2042995
Chatterjee, 2010, Is denoising dead?, IEEE Trans. Image Process., 19, 895, 10.1109/TIP.2009.2037087
Chatterjee, 2012, Patch-based near-optimal image denoising, IEEE Trans. Image Process., 21, 1635, 10.1109/TIP.2011.2172799
Zhang, 2014, Image restoration using joint statistical modeling in a space-transform domain, IEEE Trans. Circuits Syst. Video Technol., 24, 915, 10.1109/TCSVT.2014.2302380
Talebi, 2014, Global image denoising, IEEE Trans. Image Process., 23, 755, 10.1109/TIP.2013.2293425
Sethunadh, 2014, Spatially adaptive image denoising using inter-scale dependence in directionlet domain, IET Image Process., 9, 142, 10.1049/iet-ipr.2014.0112
Yue, 2015, Image denoising by exploring external and internal correlations, IEEE Trans. Image Process., 24, 1967, 10.1109/TIP.2015.2412373
Galiano, 2018, On a cross-diffusion system arising in image denoising, Comput. Math. Appl., 26, 984, 10.1016/j.camwa.2018.05.035
Papyan, 2016, Multi-scale patch-based image restoration, IEEE Trans. Image Process., 25, 249, 10.1109/TIP.2015.2499698
Feng, 2015, An optimized pixel-wise weighting approach for patch-based image denoising, IEEE Signal Process. Lett., 22, 115, 10.1109/LSP.2014.2350032
Baloch, 2018, Residual correlation regularization based image denoising, IEEE Signal Process. Lett., 25, 298, 10.1109/LSP.2017.2789018
Shahdoosti, 2016, Image denoising using sparse representation classification and non-subsampled shearlet transform, Signal Image Video Process., 10, 1081, 10.1007/s11760-016-0862-0
Ma, 2016, An edge fusion scheme for image denoising based on anisotropic diffusion models, J. Vis. Commun. Image Represent., 40, 406, 10.1016/j.jvcir.2016.06.027
Jevnisek, 2017, Co-occurrence filter, 3816
Wong, 2011, Stochastic image denoising based on Markov-chain Monte Carlo sampling, Signal Process., 91, 2112, 10.1016/j.sigpro.2011.03.021
Xu, 2016, Fully-connected continuous conditional random field with stochastic cliques for dark-spot detection in SAR imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 2882, 10.1109/JSTARS.2016.2531985
Wong, 2012, Monte Carlo despeckling of transrectal ultrasound images of the prostate, Digit. Signal Process., 22, 768, 10.1016/j.dsp.2012.04.006
Li, 2015, QMCTLS: quasi Monte Carlo texture likelihood sampling for despeckling of complex polarimetric SAR images, IEEE Geosci. Remote Sens. Lett., 12, 1566, 10.1109/LGRS.2015.2413299
Xu, 2015, Hyperspectral image denoising using a spatial–spectral Monte Carlo sampling approach, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 3025, 10.1109/JSTARS.2015.2402675
Yang, 2011, A wavelet multiscale denoising algorithm for magnetic resonance (MR) images, Meas. Sci. Technol., 22, 10.1088/0957-0233/22/2/025803
Kumar, 2018, CT image denoising using locally adaptive shrinkage rule in tetrolet domain, J. King Saud Univ.-Comput. Inf. Sci., 30, 41
Jian, 2017, Study on underwater image denoising algorithm based on wavelet transform, 806, 01
Sharmila, 2014, Efficient analysis of hybrid directional lifting technique for satellite image denoising, Signal Image Video Process., 8, 1399, 10.1007/s11760-012-0369-2
Liu, 2017, SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning, IEEE Trans. Geosci. Remote Sens., 55, 2985, 10.1109/TGRS.2017.2657602
Shen, 2018, Improved anscombe transformation and total variation for denoising of lowlight infrared images, Infrared Phys Technol, 93, 192, 10.1016/j.infrared.2018.07.024
https://www.mathworks.com/matlabcentral/fileexchange/67703-image-processing-dataset-for-color-grey-image-fusion–image-blending–image-denoising–enhancement(accessed Accessed on 9. 10October. 2017)
Dogra, 2016, Efficient representation of texture details in medical images by fusion of Ripplet and DDCT transformed images, Trop. J. Pharm. Res., 15, 1983, 10.4314/tjpr.v15i9.24
Dogra, 2017, Bone vessel image fusion via generalized Reisz wavelet transform using averaging fusion rule, J. Comput. Sci., 21, 371, 10.1016/j.jocs.2016.10.009
Dogra, 2016, Color and grey scale fusion of osseous and vascular information, J. Comput. Sci., 17, 103, 10.1016/j.jocs.2016.09.003
Dogra, 2016, Osseous and vascular information fusion using various spatial domain filters, Asian J. Res. Chem., 9, 937
Goyal, 2016, Noise reduction in MR brain image via various transform domain schemes, Asian J. Res. Chem., 9, 919
Dogra, 2017, From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications, IEEE Access, 5, 16040, 10.1109/ACCESS.2017.2735865
Yadav, 2017, A review on image fusion methodologies and applications, Res. J. Pharm. Technol., 10, 1239, 10.5958/0974-360X.2017.00221.9
Goyal, 2017, Dual way residue noise thresholding along with feature preservation, Pattern Recognit. Lett., 94, 194, 10.1016/j.patrec.2017.02.017
Dogra, 2018, An efficient image integration algorithm for night mode vision applications, MultimedIS Tools Appl., 1
Dogra, 2017, Current and future orientation of anatomical and functional imaging modality fusion, Biomed. Pharmacol. J., 10, 1661, 10.13005/bpj/1277
Dogra, 2014, CT and MRI brain images registration for clinical applications, J. Cancer Sci. Ther., 6, 018
Dogra, 2014, CT and mri brain images matching using ridgeness correlation, Biomed. Pharmacol. J., 7, 20, 10.13005/bpj/543
R. Kumar, 2010 (https://in.mathworks.com/matlabcentral/fileexchange/28112-diffusion-filtering-for-image-denoising).
Dabov, 2007, Joint image sharpening and denoising by 3D transform-domain collaborative filtering, 2007
Shahdoosti, 2019, Edge-preserving image denoising using a deep convolutional neural network, Signal Process., 159, 20, 10.1016/j.sigpro.2019.01.017
Vapnik, 1998, The support vector method of function estimation, 55
Wang, 2010, A new wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine, Expert Syst. Appl., 37, 7040, 10.1016/j.eswa.2010.03.014
Wang, 2013, Image denoising using SVM classification in nonsubsampled contourlet transform domain, Inf. Sci., 246, 155, 10.1016/j.ins.2013.05.028
Balster, 2005, Feature-based wavelet shrinkage algorithm for image denoising, IEEE Trans. Image Process., 14, 2024, 10.1109/TIP.2005.859385
Shahdoosti, 2016, Combination of anisotropic diffusion and non-subsampled shearlet transform for image denoising, J. Intell. Fuzzy Syst., 30, 3087, 10.3233/IFS-152035
Shahdoosti, 2018, A maximum likelihood filter using non-local information for despeckling of ultrasound images, Mach. Vis. Appl., 29, 689, 10.1007/s00138-018-0929-8
Shahdoosti, 2019, A new compressive sensing based image denoising method using block-matching and sparse representations over learned dictionaries, Multimedia Tools Appl., 78, 12561, 10.1007/s11042-018-6818-3
Shahdoosti, 2017, Two-stage image denoising considering interscale and intrascale dependencies, J. Electron. Imaging, 26
Shahdoosti, 2017, Image denoising in dual contourlet domain using hidden Markov tree models, Digit. Signal Process., 67, 17, 10.1016/j.dsp.2017.04.011
Parameswaran, 2016, Patch matching for image denoising using neighborhood-based collaborative filtering, IEEE Trans. Circuits Syst. Video Technol., 28, 392, 10.1109/TCSVT.2016.2610038
Karami, 2017, Image denoising using generalised Cauchy filter, IET Image Process., 11, 767, 10.1049/iet-ipr.2016.0554
Zhao, 2017, Detail-preserving image denoising via adaptive clustering and progressive PCA thresholding, IEEE Access, 6, 6303, 10.1109/ACCESS.2017.2780985
Fedorov, 2017, Affine non-local means image denoising, IEEE Trans. Image Process., 26, 2137, 10.1109/TIP.2017.2681421
Lebrun, 2015, Multiscale image blind denoising, IEEE Trans. Image Process., 24, 3149, 10.1109/TIP.2015.2439041
Guo, 2015, An efficient SVD-based method for image denoising, IEEE Trans. Circuits Syst. Video Technol., 26, 868, 10.1109/TCSVT.2015.2416631
Frosio, 2018, Statistical nearest neighbors for image denoising, IEEE Trans. Image Process., 28, 723, 10.1109/TIP.2018.2869685
Wang, 2019, Seismic data denoising for complex structure using BM3D and local similarity, J. Appl. Geophys., 10.1016/j.jappgeo.2019.04.018
Chen, 2019, Low-resolution palmprint image denoising by generative adversarial networks, Neurocomputing, 358, 275, 10.1016/j.neucom.2019.05.046
Li, 2019, Image denoising via multi-scale gated fusion network, IEEE Access, 7, 49392, 10.1109/ACCESS.2019.2910879
Zheng, 2018, Hyperspectral image denoising by fusing the selected related bands, IEEE Trans. Geosci. Remote Sens., 57, 2596, 10.1109/TGRS.2018.2875304
Liu, 2019, Block matching local SVD operator based sparsity and TV regularization for image denoising, J. Sci. Comput., 78, 607, 10.1007/s10915-018-0785-8
Wang, 2019, Multi-matrices low-rank decomposition with structural smoothness for image denoising, IEEE Trans. Circuits Syst. Video Technol.
Jifara, 2019, Medical image denoising using convolutional neural network: a residual learning approach, J. Supercomput., 75, 704, 10.1007/s11227-017-2080-0
Baloch, 2018, Residual correlation regularization based image denoising, IEEE Signal Process. Lett., 25, 298, 10.1109/LSP.2017.2789018
Diwakar, 2018, A review on CT image noise and its denoising, Biomed. Signal Process. Control, 42, 73, 10.1016/j.bspc.2018.01.010
Weiss, 2007, What makes a good model of natural images?, 1
Liu, 2014, Adaptive sparse norm and nonlocal total variation methods for image smoothing, Math. Probl. Eng.
Dong, 2012, Nonlocally centralized sparse representation for image restoration, IEEE Trans. Image Process., 22, 1620, 10.1109/TIP.2012.2235847
Takeda, 2008, Deblurring using regularized locally adaptive kernel regression, IEEE Trans. Image Process., 17, 550, 10.1109/TIP.2007.918028
Burger, 2012, Image denoising: can plain neural networks compete with BM3D?, 2392
Deledalle, 2011, Image denoising with patch based PCA: local versus global, 81, 425
Chambolle, 2010, An introduction to total variation for image analysis, Theor. Found. Numer. Methods Sparse Recov., 9, 227