Hybrid optimization schemes for quantum control

EPJ Quantum Technology - Tập 2 - Trang 1-16 - 2015
Michael H Goerz1, K Birgitta Whaley2, Christiane P Koch1
1Theoretische Physik, Universität Kassel, Kassel, Germany
2Department of Chemistry, University of California, Berkeley, USA

Tóm tắt

Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.

Tài liệu tham khảo

Brumer P, Shapiro M. Principles and applications of the quantum control of molecular processes. New York: Wiley; 2003. Rice SA, Zhao M. Optical control of molecular dynamics. New York: Wiley; 2000. Tannor DJ, Rice SA. Control of selectivity of chemical reaction via control of wave packet evolution. J Chem Phys. 1985;83:5013. Tannor DJ, Kosloff R, Rice SA. Coherent pulse sequence induced control of selectivity of reactions: exact quantum mechanical calculations. J Chem Phys. 1986;85:5805. Levin L, Skomorowski W, Rybak L, Kosloff R, Koch CP, Amitay Z. Coherent control of bond making. Phys Rev Lett. 2015;114:233003. Brif C, Chakrabarti R, Rabitz H. Control of quantum phenomena: past, present and future. New J Phys. 2010;12:075008. Konnov AI, Krotov VF. On global methods of successive improvement of controlled processes. Autom Remote Control. 1999;60:1427. Sklarz SE, Tannor DJ. Loading a Bose-Einstein condensate onto an optical lattice: an application of optimal control theory to the nonlinear Schrödinger equation. Phys Rev A. 2002;66(5):053619. Reich DM, Ndong M, Koch CP. Monotonically convergent optimization in quantum control using Krotov’s method. J Chem Phys. 2012;136:104103. Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser SJ. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J Magn Res. 2005;172:296. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16(5):1190. de Fouquières P, Schirmer SG, Glaser SJ, Kuprov I. Second order gradient ascent pulse engineering. J Magn Res. 2011;212:412. Eitan R, Mundt M, Tannor DJ. Optimal control with accelerated convergence: combining the Krotov and quasi-Newton methods. Phys Rev A. 2011;83(5):053426. Machnes S, Sander U, Glaser S, de Fouquières P, Gruslys A, Schirmer S, Schulte-Herbrüggen T. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys Rev A. 2011;84:022305. Judson RS, Rabitz H. Teaching lasers to control molecules. Phys Rev Lett. 1992;68:1500. Goldberg DE. Genetic algorithms in search, optimization and machine learning. Boston: Addison-Wesley; 1989. Doria P, Calarco T, Montangero S. Optimal control technique for many-body quantum dynamics. Phys Rev Lett. 2011;106:190501. Caneva T, Calarco T, Montangero S. Chopped random-basis quantum optimization. Phys Rev A. 2011;84:022326. Palao JP, Kosloff R. Quantum computing by an optimal control algorithm for unitary transformations. Phys Rev Lett. 2002;89:188301. Tesch CM, de Vivie-Riedle R. Quantum computation with vibrationally excited molecules. Phys Rev Lett. 2002;89:157901. Treutlein P, Hänsch TW, Reichel J, Negretti A, Cirone MA, Calarco T. Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys Rev A. 2006;74:022312. Schirmer S. Implementation of quantum gates via optimal control. J Mod Opt. 2009;56:831. Müller MM, Reich DM, Murphy M, Yuan H, Vala J, Whaley KB, Calarco T, Koch CP. Optimizing entangling quantum gates for physical systems. Phys Rev A. 2011;84:042315. Egger DJ, Wilhelm FK. Optimized controlled-z gates for two superconducting qubits coupled through a resonator. Supercond Sci Technol. 2014;27:014001. Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovannetti V, Santoro GE. Optimal control at the quantum speed limit. Phys Rev Lett. 2009;103:240501. Goerz MH, Calarco T, Koch CP. The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J Phys B. 2011;44:154011. Bhattacharyya K. Quantum decay and the Mandelstam-Tamm-energy inequality. J Phys A. 1983;16:2993. Margolus N, Levitin LB. The maximum speed of dynamical evolution. Physica D. 1998;120:188. Kallush S, Kosloff R. Quantum governor: automatic quantum control and reduction of the influence of noise without measuring. Phys Rev A. 2006;73:032324. Schulte-Herbrüggen T, Spörl A, Khaneja N, Glaser SJ. Optimal control for generating quantum gates in open dissipative systems. J Phys B. 2011;44:154013. Goerz MH, Halperin EJ, Aytac JM, Koch CP, Whaley KB. Robustness of high-fidelity Rydberg gates with single-site addressability. Phys Rev A. 2014;90:032329. Cross AW, Gambetta JM. Optimized pulse shapes for a resonator-induced phase gate. Phys Rev A. 2015;91:032325. Rigetti C, Gambetta JM, Poletto S, Plourde BLT, Chow JM, Córcoles AD, Smolin JA, Merkel ST, Rozen JR, Keefe GA, Rothwell MB, Ketchen MB, Steffen M. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys Rev B. 2012;86:100506. Chow JM, Gambetta JM, Cross AW, Merkel ST, Rigetti C, Steffen M. Microwave-activated conditional-phase gate for superconducting qubits. New J Phys. 2013;15:115012. Koch J, Yu TM, Gambetta J, Houck AA, Schuster DI, Majer J, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ. Charge-insensitive qubit design derived from the Cooper pair box. Phys Rev A. 2007;76:042319. Majer J, Chow JM, Gambetta JM, Koch J, Johnson BR, Schreier JA, Frunzio L, Schuster DI, Houck AA, Wallraff A, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ. Coupling superconducting qubits via a cavity bus. Nature. 2007;449:443. Makhlin Y. Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Inf Process. 2002;1(4):243. Zhang J, Vala J, Sastry S, Whaley KB. Geometric theory of nonlocal two-qubit operations. Phys Rev A. 2003;67(4):042313. Kraus B, Cirac JI. Optimal creation of entanglement using a two-qubit gate. Phys Rev A. 2001;63(6):062309. Palao JP, Kosloff R. Optimal control theory for unitary transformations. Phys Rev A. 2003;68:062308. Watts P, Vala J, Müller MM, Calarco T, Whaley KB, Reich DM, Goerz MH, Koch CP. Optimizing for an arbitrary perfect entangler: I. Functionals. Phys Rev A. 2015;91:062306. Pedersen LH, Møller NM, Mølmer K. Fidelity of quantum operations. Phys Lett A. 2007;367:47. Goerz MH, Reich DM, Koch CP. Optimal control theory for a unitary operation under dissipative evolution. New J Phys. 2014;16:055012. Strauch FW, Johnson PR, Dragt AJ, Lobb CJ, Anderson JR, Wellstood FC. Quantum logic gates for coupled superconducting phase qubits. Phys Rev Lett. 2003;91:167005. Goerz MH, Gualdi G, Reich DM, Koch CP, Motzoi F, Whaley KB, Vala J, Müller MM, Montangero S, Calarco T. Optimizing for an arbitrary perfect entangler. II. Application. Phys Rev A. 2015;91:062307. Ndong M, Koch CP, Sugny D. Time optimization and state-dependent constraints in the quantum optimal control of molecular orientation. J Mod Opt. 2014;61(10):857. Egger DJ, Wilhelm FK. Adaptive hybrid optimal quantum control for imprecisely characterized systems. Phys Rev Lett. 2014;112:240503. Grace M, Brif C, Rabitz H, Walmsley IA, Kosut RL, Lidar DA. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. J Phys B. 2007;40(9):103. Grace MD, Brif C, Rabitz H, Lidar DA, Walmsley IA, Kosut RL. Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments. J Mod Opt. 2007;54:2339. Moore KW, Rabitz H. Exploring constrained quantum control landscapes. J Chem Phys. 2012;137:134113.