50 years of Computational Wind Engineering: Past, present and future
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abuku, 2009, On the validity of numerical wind-driven rain simulation on a rectangular low-rise building under various oblique winds, Build. Environ., 44, 621, 10.1016/j.buildenv.2008.05.003
Ai, 2013, CFD simulation of flow and dispersion around an isolated building: effect of inhomogeneous ABL and near-wall treatment, Atmos. Environ., 77, 568, 10.1016/j.atmosenv.2013.05.034
AIAA, 1998
AMS, 2014. Meteorological Glossary. American Meteorological Society. 〈http://glossary.ametsoc.org/wiki/Mesoscale〉 (Retrieved 04.03.14.)
Asfour, 2007, A comparison between CFD and Network models for predicting wind-driven ventilation in buildings, Build. Environ., 42, 4079, 10.1016/j.buildenv.2006.11.021
ASME, 2009. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. ASME VandV 20-2009, The American Society of Mechanical Engineers.
ASME, 2011. 〈http://journaltool.asme.org/Templates/JFENumAccuracy.pdf〉 (Retrieved 30.06.11).
Avissar, 1990, Operating rages of mesoscale numerical models and meteorological wind tunnels for the simulation of sea and land breezes, Bound.-Layer Meteorol., 50, 227, 10.1007/BF00120526
Awbi, 2003
Ayotte, 2008, Computational modelling for wind energy assessment, J. Wind Eng. Ind. Aerodyn., 96, 1571, 10.1016/j.jweia.2008.02.002
Baetke, 1990, Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners, J. Wind Eng. Ind. Aerodyn., 35, 129, 10.1016/0167-6105(90)90213-V
Baik, 2012, Effects of building roof greening on air quality in street canyons, Atmos. Environ., 61, 48, 10.1016/j.atmosenv.2012.06.076
Baker, C.J., 2000. Foreword. In: Proceedings of the 3rd International Symposium on Computational Wind Engineering. Birmingham, UK, 4–7 September, 2000.
Baker, 2007, Wind engineering – past, present and future, J. Wind Eng. Ind. Aerodyn., 95, 843, 10.1016/j.jweia.2007.01.011
Baker, 2010, The flow around high speed trains, J. Wind Eng. Ind. Aerodyn., 98, 277, 10.1016/j.jweia.2009.11.002
Baker, 1985, Strong winds in complicated hilly terrain – field measurements and wind-tunnel study, J. Wind Eng. Ind. Aerodyn., 18, 1, 10.1016/0167-6105(85)90072-8
Balczo, 2009, Numerical modelling of flow and pollutant dispersion in street canyons with tree planting, Meteorol. Z., 18, 197, 10.1127/0941-2948/2009/0361
Balczo, 2011, Air quality around motorway tunnels in complex terrain – computational fluid dynamics modeling and comparison to wind tunnel data, IDOJARAS, 115, 179
Bangalee, 2013, Flow visualization, PIV measurement and CFD calculation for fluid-driven natural cross-ventilation in a scale model, Energy Build., 66, 306, 10.1016/j.enbuild.2013.07.005
Bartzanas, 2002, Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings, Comput. Electron. Agric., 34, 207, 10.1016/S0168-1699(01)00188-0
Bartzanas, 2004, Effect of vent arrangement on windward ventilation of a tunnel greenhouse, Biosyst. Eng., 88, 479, 10.1016/j.biosystemseng.2003.10.006
Bartzanas, 2007, Analysis of airflow through experimental rural buildings: Sensitivity to turbulence models, Biosyst. Eng., 97, 229, 10.1016/j.biosystemseng.2007.02.009
Bartzis, 2006, Turbulence modelling in the atmospheric boundary layer: a review and some recent developments, WIT Trans. Ecol. Environ.: Air Pollut. XIV, 86, 3
Bartzis, 2004, Thematic area 5: best practice advice for environmental flows, QNET-CFD Netw. Newsl., 2, 34
Baskaran, 1996, Investigation of air flow around buildings using computational fluid dynamics techniques, Eng. Struct., 18, 861, 10.1016/0141-0296(95)00154-9
Baskaran, 1989, Computational evaluation of wind effects on buildings, Build. Environ., 24, 325, 10.1016/0360-1323(89)90027-9
Baskaran, 1992, Influence of computational parameters on the evaluation of wind effects on the building envelope, Build. Environ., 27, 39, 10.1016/0360-1323(92)90006-B
Beranek, W.J., 1982. Beperken van windhinder om gebouwen, deel 2, Stichting Bouwresearch no. 90, Kluwer Technische Boeken BV, Deventer (in Dutch).
Beranek, 1984, Wind environment around single buildings of rectangular shape, Heron, 29, 4
Beranek, W.J., Van Koten, H., 1979. Beperken van windhinder om gebouwen, deel 1, Stichting Bouwresearch no. 65, Kluwer Technische Boeken BV, Deventer (in Dutch).
Bitsuamlak, 2004, Numerical evaluation of wind flow over complex terrain: review, J. Aerosp. Eng., 17, 135, 10.1061/(ASCE)0893-1321(2004)17:4(135)
Bjerg, 2013, Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 2: air change modelling, Biosyst. Eng., 116, 246, 10.1016/j.biosystemseng.2013.01.010
Bjerg, 2013, Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling, Biosyst. Eng., 116, 259, 10.1016/j.biosystemseng.2013.06.012
Blocken, 2002, Spatial and temporal distribution of driving rain on a low-rise building, Wind Struct., 5, 441, 10.12989/was.2002.5.5.441
Blocken, 2004, A review of wind-driven rain research in building science, J. Wind Eng. Ind. Aerodyn., 92, 1079, 10.1016/j.jweia.2004.06.003
Blocken, 2004, Pedestrian wind environment around buildings: literature review and practical examples, J. Therm. Envel. Build. Sci., 28, 107, 10.1177/1097196304044396
Blocken, 2004, Modification of pedestrian wind comfort in the Silvertop Tower passages by an automatic control system, J. Wind Eng. Ind. Aerodyn., 92, 849, 10.1016/j.jweia.2004.04.004
Blocken, 2005, High-resolution wind-driven-rain measurements on a low-rise building – experimental data for model development and model validation, J. Wind Eng. Ind. Aerodyn., 93, 905, 10.1016/j.jweia.2005.09.004
Blocken, 2006, On the accuracy of wind-driven rain measurements on buildings, Build. Environ., 41, 1798, 10.1016/j.buildenv.2005.07.022
Blocken, 2006, The influence of the wind-blocking effect by a building on its wind-driven rain exposure, J. Wind Eng. Ind. Aerodyn., 94, 101, 10.1016/j.jweia.2005.11.001
Blocken, 2007, On the errors associated with the use of hourly data in wind-driven rain calculations on building facades, Atmos. Environ., 41, 2335, 10.1016/j.atmosenv.2006.11.014
Blocken, 2007, Validation of CFD simulations of wind-driven rain on a low-rise building, Build. Environ., 42, 2530, 10.1016/j.buildenv.2006.07.032
Blocken, 2008, Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: generic sub-configuration validation, wind comfort assessment and uncertainty issues, Wind Struct., 11, 51, 10.12989/was.2008.11.1.051
Blocken, 2007, CFD simulation of the atmospheric boundary layer: wall function problems, Atmos. Environ., 41, 238, 10.1016/j.atmosenv.2006.08.019
Blocken, 2007, CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow, J. Wind Eng. Ind. Aerodyn., 95, 941, 10.1016/j.jweia.2007.01.013
Blocken, 2008, Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments, J. Wind Eng. Ind. Aerodyn., 96, 1817, 10.1016/j.jweia.2008.02.049
Blocken, 2008, Wind environmental conditions in passages between two long narrow perpendicular buildings, J. Aerosp. Eng. – ASCE, 21, 280, 10.1061/(ASCE)0893-1321(2008)21:4(280)
Blocken, 2009, Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard, J. Wind Eng. Ind. Aerodyn., 97, 255, 10.1016/j.jweia.2009.06.007
Blocken, 2010, Overview of three state-of-the-art wind-driven rain assessment models and comparison based on model theory, Build. Environ., 45, 691, 10.1016/j.buildenv.2009.08.007
Blocken, 2010, Comparison of calculation methods for wind-driven rain deposition on building facades, Atmos. Environ., 44, 1714, 10.1016/j.atmosenv.2010.02.011
Blocken, 2011, Application of CFD in building performance simulation for the outdoor environment: an overview, J. Build. Perform. Simul., 4, 157, 10.1080/19401493.2010.513740
Blocken, 2011, Computational analysis of the performance of a venturi-shaped roof for natural ventilation: venturi-effect versus wind-blocking effect, Comput. Fluids, 48, 202, 10.1016/j.compfluid.2011.04.012
Blocken, 2011, Intercomparison of wind-driven rain deposition models based on two case studies with full-scale measurements, J. Wind Eng. Ind. Aerodyn., 99, 448, 10.1016/j.jweia.2010.11.004
Blocken, 2012, Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics, Environ. Model. Softw., 33, 1, 10.1016/j.envsoft.2012.02.001
Blocken, 2012, CFD simulation for pedestrian wind comfort and wind safety in urban areas: general decision framework and case study for the Eindhoven University campus, Environ. Model. Softw., 30, 15, 10.1016/j.envsoft.2011.11.009
Blocken, 2013, Rainwater runoff from building facades: a review, Build. Environ., 60, 339, 10.1016/j.buildenv.2012.10.008
Blocken, 2013, Editorial to virtual special issue: CFD simulation of micro-scale pollutant dispersion in the built environment, Build. Environ., 64, 225, 10.1016/j.buildenv.2013.01.001
Blocken, 2013, Editorial to virtual special issue: CFD simulation of pedestrian-level wind conditions around buildings: past achievements and prospects, J. Wind Eng. Ind. Aerodyn., 121, 138, 10.1016/j.jweia.2013.08.008
Bottema, 1993
Bournet, 2010, Effect of ventilator configuration on the distributed climate of greenhouses: a review of experimental and CFD studies, Comput. Electron. Agric., 74, 195, 10.1016/j.compag.2010.08.007
Bowen, 2003, Modelling of strong wind flows over complex terrain at small geometric scales, J. Wind Eng. Ind. Aerodyn., 91, 1859, 10.1016/j.jweia.2003.09.029
Briggen, 2009, Wind-driven rain on the facade of a monumental tower: numerical simulation, full-scale validation and sensitivity analysis, Build. Environ., 44, 1675, 10.1016/j.buildenv.2008.11.003
Britter, R., Schatzmann, M., 2007 (Eds.). Model Evaluation Guidance and Protocol Document COST Action 732. COST Office Brussels, 3-00-018312-4.
Buccolieri, 2011, MUST experiment simulations using CFD and integral models, Int. J. Environ. Pollut., 44, 376, 10.1504/IJEP.2011.038439
Buccolieri, 2009, Aerodynamic effects of trees on pollutant concentration in street canyons, Sci. Total Environ., 407, 5247, 10.1016/j.scitotenv.2009.06.016
Buccolieri, 2011, Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction, Atmos. Environ., 45, 1702, 10.1016/j.atmosenv.2010.12.058
Calautit, 2014, A validated design methodology for a closed-loop subsonic wind tunnel, J. Wind Eng. Ind. Aerodyn., 125, 180, 10.1016/j.jweia.2013.12.010
Canepa, 2004, An overview about the study of downwash effects on dispersion of airborne pollutants, Environ. Model. Softw., 19, 1077, 10.1016/j.envsoft.2003.11.011
Casey, M., Wintergerste, T., 2000. Best Practice Guidelines, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD, ERCOFTAC, Brussels.
Castro, 1999, Numerical wind engineering: the way ahead?, Proc. Inst. Civil Eng. – Struct. Build., 134, 275, 10.1680/istbu.1999.31569
Castro, 1977, Flow around a surface-mounted cube in uniform and turbulent streams, J. Fluid Mech., 79, 307, 10.1017/S0022112077000172
Cermak, 1975, Applications of fluid mechanics to wind engineering - A Freeman Scholar Lecture, J. Fluids Engng., ASME, 9, 10.1115/1.3447225
Chang, 2006, Effect of porous hedge on cross ventilation of a residential building, Build. Environ., 41, 549, 10.1016/j.buildenv.2005.02.032
Chapman S., 1965. Introduction to Dover Edition of Weather Prediction by Numerical Process.
Charney, 1955, The use of the primitive equations of motion in numerical prediction, Tellus, 7, 22, 10.1111/j.2153-3490.1955.tb01138.x
Charney, 1950, Numerical integration of the barotropic vorticity equation, Tellus, 2, 237, 10.1111/j.2153-3490.1950.tb00336.x
Chay, 2002, Pressure distributions on a cube in a simulated thunderstorm downburst – Part A: stationary downburst observations, J. Wind Eng. Ind. Aerodyn., 90, 711, 10.1016/S0167-6105(02)00158-7
Chen, 2007, Sustainable urban housing in China, J. Harbin Inst. Tech. (New Ser.), 14, 6
Chen, 2009, Ventilation performance prediction for buildings: a method overview and recent applications, Build. Environ., 44, 848, 10.1016/j.buildenv.2008.05.025
Cheung, 2011, CFD simulations of natural ventilation behaviour in high-rise buildings in regular and staggered arrangements at various spacings, Energy Build., 43, 1149, 10.1016/j.enbuild.2010.11.024
Choi, E.C.C., 1991. Numerical simulation of wind-driven rain falling onto a 2-D building. in: Proceedings of the Asia Pacific Conference on Computational Mechanics, Hong Kong, pp. 1721–1728.
Choi, 1993, Simulation of wind-driven rain around a building, J. Wind Eng. Ind. Aerodyn., 46&47, 721, 10.1016/0167-6105(93)90342-L
Choi, 1994, Determination of wind-driven rain intensity on building faces, J. Wind Eng. Ind. Aerodyn., 51, 55, 10.1016/0167-6105(94)90077-9
Choi, 1994, Parameters affecting the intensity of wind-driven rain on the front face of a building, J. Wind Eng. Ind. Aerodyn., 53, 1, 10.1016/0167-6105(94)90015-9
Choi, 1997, Numerical modelling of gust effect on wind-driven rain, J. Wind Eng. Ind. Aerodyn., 72, 107, 10.1016/S0167-6105(97)00246-8
Chu, 2013, Wind-driven cross ventilation with internal obstacles, Energy Build., 67, 201, 10.1016/j.enbuild.2013.07.086
Cochran, 2011, A physical modeler׳s view of computational wind engineering, J. Wind Eng. Ind. Aerodyn., 99, 139, 10.1016/j.jweia.2011.01.015
Conan, 2012, Sand erosion technique applied to wind resource assessment, J. Wind Eng. Ind. Aerodyn., 104–106, 322, 10.1016/j.jweia.2012.03.017
Cowan, 1997, Numerical considerations for simulations of flow and dispersion around buildings, J. Wind Eng. Ind. Aerodyn., 67 and 68, 535, 10.1016/S0167-6105(97)00098-6
da Graça, 2002, Simulation of wind-driven ventilative cooling systems for an apartment building in Beijing and Shanghai, Energy Build., 34, 1, 10.1016/S0378-7788(01)00083-4
Da Matha Sant’Anna, 1990, Snow drifts on flat roofs: wind tunnel tests and field measurements, J. Wind Eng. Ind. Aerodyn., 34, 223, 10.1016/0167-6105(90)90154-5
Dalgliesh, 2003, BLWT, CFD and HAM modelling vs. the real world: bridging the gaps with full-scale measurements, J. Wind Eng. Ind. Aerodyn., 91, 1651, 10.1016/j.jweia.2003.09.015
Davenport, A.G., 1991. Preface to the Proceedings of the 8th International Conference on Wind Engineering, London, Ontario.
Davenport, A.G., 1999. The missing links. In: Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, pp. 3–15.
Deaves, 1975, Wind over hills: a numerical approach, J. Wind Eng. Ind. Aerodyn., 1, 371, 10.1016/0167-6105(75)90031-8
Defraeye, 2012, Convective heat and mass transfer modelling at air–porous material interfaces: overview of existing methods and relevance, Chem. Eng. Sci., 74, 49, 10.1016/j.ces.2012.02.032
Defraeye, 2013, Convective heat and mass exchange predictions at leaf surfaces: applications, methods and perspectives, Comput. Electron. Agric., 96, 180, 10.1016/j.compag.2013.05.008
Dejoan, 2010, Comparison between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes computations for the MUST field experiment. Part II: effects of incident wind angle deviation on the mean flow and plume dispersion, Bound.-Layer Meteorol., 135, 133, 10.1007/s10546-010-9467-2
Delage, 1970, Numerical studies of heat island circulations, Bound.-Layer Meteorol., 1, 201, 10.1007/BF00185740
Delpech, 1998, Snowdrifting simulation around Antartic buildings, J. Wind Eng. Ind. Aerodyn., 74–76, 567, 10.1016/S0167-6105(98)00051-8
Derickson, R.G., Meroney, R.N., 1977. A simplified physics airflow model for evaluating wind power sites in complex terrain. In: Proceedings of the Summer Computer Simulation Conference, July 18–20, 1977, Hyatt Regency, Chicago, Illinois.
Di Sabatino, 2007, Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models, Atmos. Environ., 41, 8316, 10.1016/j.atmosenv.2007.06.052
Di Sabatino, 2011, COST 732 in practice: the MUST model evaluation exercise, Int. J. Environ. Pollut., 44, 403, 10.1504/IJEP.2011.038442
Di Sabatino, 2013, Recent advancements in numerical modelling of flow and dispersion in urban areas: a short review, Int. J. Environ. Pollut., 52, 172, 10.1504/IJEP.2013.058454
Durgin, 1992, Pedestrian level wind studies at the Wright brothers facility, J. Wind Eng. Ind. Aerodyn., 44, 2253, 10.1016/0167-6105(92)90016-4
Estoque, 1961, A theoretical investigation of the sea breeze, Quart. J. R. Metorol. Soc., 87, 136, 10.1002/qj.49708737203
Estoque, 1962, The sea breeze as a function of the prevailing synoptic situation, J. Atmos. Sci., 19, 244, 10.1175/1520-0469(1962)019<0244:TSBAAF>2.0.CO;2
Estoque, 1969, Flow over a localized heat source, Mon. Weather Rev., 97, 850, 10.1175/1520-0493(1969)097<0850:FOALHS>2.3.CO;2
Etheridge, 1996
Etheridge, 2011, 454
Etyemezian, 2000, Impingement of rain drops on a tall building, Atmos. Environ., 34, 2399, 10.1016/S1352-2310(99)00443-4
Evola, 2006, Computational analysis of wind driven natural ventilation in buildings, Energy Build., 38, 491, 10.1016/j.enbuild.2005.08.008
Fatnassi, 2006, Optimisation of greenhouse insect screening with computational fluid dynamics, Biosyst. Eng., 93, 301, 10.1016/j.biosystemseng.2005.11.014
Fernando, 2010, Flow, turbulence and pollutant dispersion in urban atmospheres, Phys. Fluids, 22, 051301, 10.1063/1.3407662
Ferreira, 2002, Prediction of building interference effects on pedestrian level comfort, J. Wind Eng. Ind. Aerodyn., 90, 305, 10.1016/S0167-6105(01)00212-4
Ferziger, 1990, Approaches to turbulent flow computation: applications to flow over obstacles, J. Wind Eng. Ind. Aerodyn., 35, 1, 10.1016/0167-6105(90)90208-T
Ferziger, 1993, A computational fluid dynamicist׳s view of CWE, J. Wind Eng. Ind. Aerodyn., 46–47, 879, 10.1016/0167-6105(93)90367-W
Ferziger, 1993, Simulation of complex turbulent flows: recent advances and prospects in wind engineering, J. Wind Eng. Ind. Aerodyn., 46–47, 195, 10.1016/0167-6105(93)90130-G
Ferziger, J.H., 1993c. Estimation and reduction of numerical error. FED vol. 158, In: Proceedings of the Symposium on Quantification of Uncertainty in Computational Fluid Dynamics, ASME Fluid Engineering Division, Summer Meeting, Washington DC, June 20–24, pp. 1–8.
Ferziger, 1996, 356
Finnegan, 1984, The sick building syndrome: prevalence studies, Br. Med. J. (Clin. Res. Ed.), 289, 1573, 10.1136/bmj.289.6458.1573
Fisher, 1961, A theoretical study of the sea breeze, J. Meteorol., 18, 216, 10.1175/1520-0469(1961)018<0216:ATSOTS>2.0.CO;2
Fosberg, 1967, Numerical analysis of convective motions over a mountain ridge, J. Appl. Meteorol., 6, 889, 10.1175/1520-0450(1967)006<0889:NAOCMO>2.0.CO;2
Fosberg, 1969, Airflow over a heated coastal mountain, J. Appl. Meteorol., 8, 436, 10.1175/1520-0450(1969)008<0436:AOAHCM>2.0.CO;2
Franke, J., Hirsch, C., Jensen, A.G., Krüs, H.W., Schatzmann, M., Westbury, P.S., Miles, S.D., Wisse, J.A., Wright, N.G., 2004. Recommendations on the use of CFD in wind engineering. In: van Beeck, J.P.A.J. (Ed.), Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics. COST Action C14, Impact of Wind and Storm on City Life Built Environment. Von Karman Institute, Sint-Genesius-Rode, Belgium, 5–7 May 2004.
Franke, 2011, The COST 732 best practice guideline for CFD simulation of flows in the urban environment – a summary, Int. J. Environ. Pollut., 44, 419, 10.1504/IJEP.2011.038443
Franke, J., Hellsten, A., Schlünzen, H., Carissimo, B. (Eds.). 2007. Best practice guideline for the CFD simulation of flows in the urban environment. COST Office Brussels, 3-00-018312-4.
Freitas, 1993, Journal of fluids engineering editorial policy statement on the control of numerical accuracy, J. Fluids Eng., 115, 339, 10.1115/1.2910144
Frost, 1974, A boundary-layer analysis of atmospheric motion over a semi-elliptical surface obstruction, Bound.-Layer Meteorol., 7, 165, 10.1007/BF00227911
Fujii, 2005, Progress and future prospects of CFD in aerospace—wind tunnel and beyond, Prog. Aerosp. Sci., 41, 455, 10.1016/j.paerosci.2005.09.001
Gadilhe, 1993, Numerical and experimental modelling of the three-dimensional turbulent wind flow through an urban square, J. Wind Eng. Ind. Aerodyn., 46–47, 755, 10.1016/0167-6105(93)90349-S
Ge, 2008, Recent development of bridge aerodynamics in China, J. Wind Eng. Ind. Aerodyn., 96, 736, 10.1016/j.jweia.2007.06.045
Goricsan, 2011, Simulation of flow in an idealised city using various CFD codes, Int. J. Environ. Pollut., 44, 359, 10.1504/IJEP.2011.038437
Gorlé, 2009, CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer, Atmos. Environ., 43, 673, 10.1016/j.atmosenv.2008.09.060
Gosman, 1999, Developments in CFD for industrial and environmental applications in wind engineering, J. Wind Eng. Ind. Aerodyn., 81, 21, 10.1016/S0167-6105(99)00007-0
Gousseau, 2011, CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal, Atmos. Environ., 45, 428, 10.1016/j.atmosenv.2010.09.065
Gousseau, 2011, CFD simulation of pollutant dispersion around isolated buildings: on the role of convective and turbulent mass fluxes in the prediction accuracy, J. Hazard. Mater., 194, 422, 10.1016/j.jhazmat.2011.08.008
Gousseau, 2012, Large-Eddy Simulation of pollutant dispersion around a cubical building: analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics, Environ. Pollut., 167, 47, 10.1016/j.envpol.2012.03.021
Gromke, 2011, A vegetation modeling concept for building and environmental aerodynamics wind tunnel tests and its application in pollutant dispersion studies, Environ. Pollut., 159, 2094, 10.1016/j.envpol.2010.11.012
Gromke, 2007, Influence of trees on the dispersion of pollutants in an urban street canyon – experimental investigation of the flow and concentration field, Atmos. Environ., 41, 3287, 10.1016/j.atmosenv.2006.12.043
Gromke, 2008, Aerodynamic modelling of trees for small-scale wind tunnel studies, Forestry, 81, 243, 10.1093/forestry/cpn027
Gromke, 2009, On the impact of trees on dispersion processes of traffic emissions in street canyons, Bound.-Layer Meteorol., 131, 19, 10.1007/s10546-008-9301-2
Gromke, 2012, Pollutant concentrations in street canyons of different aspect ration with avenues of trees for various wind directions, Bound.-Layer Meteorol., 144, 41, 10.1007/s10546-012-9703-z
Gromke, 2008, Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations – evaluation of CFD data with experimental data, Atmos. Environ., 42, 8640, 10.1016/j.atmosenv.2008.08.019
Hajdukiewicz, 2013, Calibrated CFD simulation to evaluate thermal comfort in a highly-glazed naturally ventilated room, Build. Environ., 70, 73, 10.1016/j.buildenv.2013.08.020
Hall, R.C., (Ed.), 1997. Evaluation of Modelling Uncertainty. CFD Modelling of Near-field Atmospheric Dispersion. Project EMU Final Report, European Commission Directorate–General XII Science, Research and Development Contract EV5V-CT94- 0531. Surrey: WS Atkins Consultants Ltd.
Haltiner, G.J., Williams, R.T., 1980. Numerical prediction and dynamic meteorology. Wiley, 477 p.
Hangan, 1999, Wind-driven rain studies. A C-FD-E approach, J. Wind Eng. Ind. Aerodyn., 81, 323, 10.1016/S0167-6105(99)00027-6
Hanjalic, 2004, Will RANS survive LES? A view of perspectives, J. Fluids Eng. – Trans. ASME, 127, 831, 10.1115/1.2037084
Hanjalic, 2008, Some developments in turbulence modeling for wind and environmental engineering, J. Wind Eng. Ind. Aerodyn., 96, 1537, 10.1016/j.jweia.2008.02.054
Hanna, 1989, Plume dispersion and concentration fluctuations in the atmosphere. Encyclopedia of environmental control technology, vol. 2, 547
Hansen, 2006, State of the art in wind turbine aerodynamics and aeroelasticity, Prog. Aerosp. Sci., 42, 285, 10.1016/j.paerosci.2006.10.002
Hanson, 1986, Validation of a computer simulation of wind flow over a building model, Build. Environ., 21, 97, 10.1016/0360-1323(86)90016-8
Hargreaves, 2007, On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer, J. Wind Eng. Ind. Aerodyn., 95, 355, 10.1016/j.jweia.2006.08.002
He, 1999, Evaluation of pedestrian winds in urban area by numerical approach, J. Wind Eng. Ind. Aerodyn., 81, 295, 10.1016/S0167-6105(99)00025-2
Heiselberg, 2010, Short-term airing by natural ventilation–implication on IAQ and thermal comfort, Indoor Air, 20, 126, 10.1111/j.1600-0668.2009.00630.x
Hess, 1967, Calculation of potential flow about arbitrary bodies, Prog. Aeronaut. Sci., 8, 1, 10.1016/0376-0421(67)90003-6
Hirsch, C., Bouffioux, V., Wilquem, F., 2002. CFD simulation of the impact of new buildings on wind comfort in an urban area. Workshop Proceedings, Cost Action C14, Impact of Wind and Storm on City Life and Built Environment, Nantes, France.
Hirt, 1972, Calculating three-dimensional flows around structures and over rough terrain, Journal of Computational Physics, 10, 324, 10.1016/0021-9991(72)90070-8
Högberg, A.B., Kragh, M.K., van Mook, F.J.R., 1999. A comparison of driving rain measurements with different gauges. In: Proceedings of the Fifth Symposium of Building Physics in the Nordic Countries, Gothenburg. pp. 361–8.
Holmes, 2006, A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available, Atmos. Environ., 40, 5902, 10.1016/j.atmosenv.2006.06.003
Horan, 2008, Sensitivity of air change rates in a naturally ventilated atrium space subject to variations in external wind speed and direction, Energy Build., 40, 1577, 10.1016/j.enbuild.2008.02.013
Hu, 2005, Numerical study of cross-ventilation using two-equation RANS turbulence models, Int. J. Vent., 4, 123
Hu, 2008, CFD modelling of unsteady cross ventilation flows using LES, J. Wind Eng. Ind. Aerodyn., 96, 1692, 10.1016/j.jweia.2008.02.031
Huang, 2010, Numerical simulations of wind-driven rain on building envelopes based on Eulerian multiphase model, J. Wind Eng. Ind. Aerodyn., 98, 843, 10.1016/j.jweia.2010.08.003
Huber, 2011, Preface to the special issue of the 5th symposium on computational wind engineering, J. Wind Eng. Ind. Aerodyn., 99
Huber, 1982, Wind tunnel investigation of the effects of a rectangular-shaped building on dispersion of effluents from short adjacent stacks, Atmos. Environ., 16, 2837, 10.1016/0004-6981(82)90034-8
Hucho, 1993, Aerodynamics of road vehicles, Annu. Rev. Fluid Mech., 25, 485, 10.1146/annurev.fl.25.010193.002413
Hughes, 1993, Finite element methods in wind engineering, J. Wind Eng. Ind. Aerodyn., 46–47, 297, 10.1016/0167-6105(93)90296-Z
Hunt, 1999, The fluid mechanics of natural ventilation – displacement ventilation by buoyancy-driven flows assisted by wind, Build. Environ., 34, 707, 10.1016/S0360-1323(98)00053-5
Inculet, D., Surry, D. 1994. Simulation of Wind-driven Rain and Wetting Patterns on Buildings, BLWTLSS30-1994, Final Report.
Inculet, D.R. 2001. The design of Cladding Against Wind-driven Rain (Ph.D.) thesis, The University of Western Ontario, London, Canada, 297 p
Irwin, 1981, A simple omnidirectional sensor for wind-tunnel studies of pedestrian-level winds, J. Wind Eng. Ind. Aerodyn., 7, 219, 10.1016/0167-6105(81)90051-9
Isyumov, 1975, Comparison of full-scale and wind tunnel wind speed measurements in the commerce court plaza, J. Wind Eng. Ind. Aerodyn., 1, 201, 10.1016/0167-6105(75)90014-8
Isyumov, 1990, Wind tunnel model tests of snow drifting on a two-level flat roof, J. Wind Eng. Ind. Aerodyn., 36, 893, 10.1016/0167-6105(90)90086-R
Iversen, 1981, Comparison of wind-tunnel model and full-scale snow fence drifts, J. Wind Eng. Ind. Aerodyn., 8, 231, 10.1016/0167-6105(81)90023-4
Jakeman, 2006, Ten iterative steps in development and evaluation of environmental models, Environ. Model. Softw., 21, 602, 10.1016/j.envsoft.2006.01.004
Janssen, 2013, Pedestrian wind comfort around buildings: comparison of wind comfort criteria based on whole-flow field data for a complex case study, Build. Environ., 59, 547, 10.1016/j.buildenv.2012.10.012
Jiang, 2002, Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation, Build. Environ., 37, 379, 10.1016/S0360-1323(01)00036-1
Jiang, 2003, Natural ventilation in buildings: measurement in a wind tunnel and numerical simulation with large-eddy simulation, J. Wind Eng. Ind. Aerodyn., 91, 331, 10.1016/S0167-6105(02)00380-X
Jiru, 2010, Application of CFD in modelling wind-induced natural ventilation of buildings – a review, Int. J. Vent., 9, 131, 10.1080/14733315.2010.11683875
Jones, 1972, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transf., 15, 301, 10.1016/0017-9310(72)90076-2
Karava, 2004, Wind driven flow through openings–a review of discharge coefficients, Int. J. Vent., 3, 255, 10.1080/14733315.2004.11683920
Karava, 2006, Impact of internal pressure coefficients on wind-driven ventilation analysis, Int. J. Vent., 5, 53, 10.1080/14733315.2006.11683724
Karava, 2007, Wind-induced natural ventilation analysis, Sol. Energy, 81, 20, 10.1016/j.solener.2006.06.013
Karava, 2011, Airflow assessment in cross-ventilated buildings with operable facade elements, Build. Environ., 46, 266, 10.1016/j.buildenv.2010.07.022
Karava, 2012, Wind-induced internal pressures in buildings with large façade openings, J. Eng. Mech., 138, 358, 10.1061/(ASCE)EM.1943-7889.0000296
Kareem, 2008, Numerical simulation of wind effects: a probabilistic perspective, J. Wind Eng. Ind. Aerodyn., 96, 1472, 10.1016/j.jweia.2008.02.048
Kasahara, 1967, NCAR global general circulation model of the atmosphere, Mon. Weather Rev., 95, 389, 10.1175/1520-0493(1967)095<0389:NGGCMO>2.3.CO;2
Kasahara, 1974, Various vertical coordinate systems used for numerical weather prediction, Mon. Weather Rev., 102, 509, 10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2
Katayama, 1992, Full-scale measurements and wind tunnel tests on cross-ventilation, J. Wind Eng. Ind. Aerodyn., 41–44, 2553, 10.1016/0167-6105(92)90047-E
Kato, M., Launder, B.E., 1993. The modelling of turbulent flow around stationary and vibrating square cylinders. In: Proceedings of the Ninth Symposium on Turbulent Shear Flows. pp. 10–14.
Kato, 1992, Velocity-pressure field of cross ventilation with open windows analyzed by wind tunnel and numerical simulation, J. Wind Eng. Ind. Aerodyn., 44, 2575, 10.1016/0167-6105(92)90049-G
Katz, 2006, Aerodynamics of race cars, Annu. Rev. Fluid Mech., 38, 27, 10.1146/annurev.fluid.38.050304.092016
Kimura, 2002, Numerical weather prediction, J. Wind Eng. Ind. Aerodyn., 90, 1403, 10.1016/S0167-6105(02)00261-1
Kobayashi, 2009, Stream tube based analysis of problems in prediction of cross-ventilation rate, Int. J. Vent., 7, 321, 10.1080/14733315.2009.11683822
Kobayashi, 2010, Experimental investigation and cfd analysis of cross-ventilated flow through single room detached house model, Build. Environ., 45, 2723, 10.1016/j.buildenv.2010.06.001
Kopp, 2013, Guest editorial for SI: solar array and wind loads, J. Wind Eng. Ind. Aerodyn., 123, 191, 10.1016/j.jweia.2013.10.008
Kothari, 1986, Perturbation analysis and measurements of building wakes in a stably stratified turbulent boundary layer, J. Wind Eng. Ind. Aerodyn., 25, 49, 10.1016/0167-6105(86)90104-2
Kubilay, 2013, CFD simulation and validation of wind-driven rain on a building facade with an Eulerian multiphase model, Build. Environ., 61, 69, 10.1016/j.buildenv.2012.12.005
Kurabuchi, T., Ohba, M., Arashiguchi, A., Iwabuchi, T., 2000. Numerical study of airflow structure of a cross ventilated model building. In: Air Distribution in Rooms: Ventilation for Health and Sustainable Environment, pp. 313-8.
Kwok, 1992, Snowdrift around buildings for antartic environment, J. Wind Eng. Ind. Aerodyn., 44, 2797, 10.1016/0167-6105(92)90073-J
Lakehal, 1995, Eulero-Lagrangian simulation of raindrop trajectories and impacts within the urban canopy, Atmos. Environ., 29, 3501, 10.1016/1352-2310(95)00202-A
Larsen, 2008, Single-sided natural ventilation driven by wind pressure and temperature difference, Energy Build., 40, 1031, 10.1016/j.enbuild.2006.07.012
Larsen, 2011, Characterization and prediction of the volume flow rate aerating a cross ventilated building by means of experimental techniques and numerical approaches, Energy Build., 43, 1371, 10.1016/j.enbuild.2011.01.015
Launder, 1975, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech., 68, 537, 10.1017/S0022112075001814
Lawson, T.V., Penwarden, A.D., 1975. The effects of wind on people in the vicinity of buildings. In: Proceedings 4th International Conference on Wind Effects on Buildings and Structures, Cambridge University Press, Heathrow, pp. 605–622.
Lee, 2005, PIV verification of greenhouse ventilation air flows to evaluate CFD accuracy, Trans. ASAE (Am. Soc. Agric. Eng.), 48, 2277, 10.13031/2013.20091
Lee, 2013, The past, present and future of CFD for agro-environmental applications, Comput. Electron. Agric., 93, 168, 10.1016/j.compag.2012.09.006
Lee, 1997, Computational fluid dynamics modeling for emergency preparedness and response, Environ. Model. Softw., 12, 43, 10.1016/S1364-8152(96)00007-2
Leitl, 1997, Car exhaust dispersion in a street canyon. Numerical critique of a wind tunnel experiments, J. Wind Eng. Ind. Aerodyn., 67&68, 293, 10.1016/S0167-6105(97)00080-9
Leitl, 1997, Concentration and flow distributions in the vicinity of U-shaped buildings: wind-tunnel and computational data, J. Wind Eng. Ind. Aerodyn., 67&68, 745, 10.1016/S0167-6105(97)00115-3
Leschziner, 1990, Modelling engineering flows with Reynolds stress turbulence closure, J. Wind Eng. Ind. Aerodyn., 35, 21, 10.1016/0167-6105(90)90209-U
Leschziner, 1993, Computational modelling of complex turbulent flow – expectations, reality and prospects, J. Wind Eng. Ind. Aerodyn., 46–47, 37, 10.1016/0167-6105(93)90113-3
Letchford, 2002, Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations, J. Wind Eng. Ind. Aerodyn., 90, 733, 10.1016/S0167-6105(02)00163-0
Letchford, 2002, Thunderstorms – their importance in wind engineering (a case for the next generation wind tunnel), J. Wind Eng. Ind. Aerodyn., 90, 1415, 10.1016/S0167-6105(02)00262-3
Leung, 2012, Wind energy development and its environmental impact: a review, Renew. Sustain. Energy Rev., 16, 1031, 10.1016/j.rser.2011.09.024
Li, 1983, Gas dispersion near a cubical model building. Part II. Concentration fluctuation measurements, J. Wind Eng. Ind. Aerodyn., 12, 35, 10.1016/0167-6105(83)90079-X
Li, 1983, Gas dispersion near a cubical model building. Part I. Mean concentration measurements, J. Wind Eng. Ind. Aerodyn., 12, 15, 10.1016/0167-6105(83)90078-8
Li, 1997, Numerical evaluation of wind-induced dispersion of pollutants around a building, J. Wind Eng. Ind. Aerodyn., 67&68, 757, 10.1016/S0167-6105(97)00116-5
Li, 2006, Recent progress in CFD modelling of wind field and pollutant transport in street canyons, Atmos. Environ., 40, 5640, 10.1016/j.atmosenv.2006.04.055
Li, 2001, Natural ventilation induced by combined wind and thermal forces, Build. Environ., 36, 59, 10.1016/S0360-1323(99)00070-0
Linden, 1999, The fluid mechanics of natural ventilation, Annu. Rev. Fluid Mech., 31, 201, 10.1146/annurev.fluid.31.1.201
Livesey, 1990, A scour technique for evaluation of pedestrian winds, J. Wind Eng. Ind. Aerodyn., 36, 779, 10.1016/0167-6105(90)90075-N
Livingstone, 2007, Geomorphology of desert sand dunes: a review of recent progress, Earth-Sci. Rev., 80, 239, 10.1016/j.earscirev.2006.09.004
Lo, 2013, Combined wind tunnel and CFD analysis for indoor airflow prediction of wind-driven cross-ventilation, Build. Environ., 60, 12, 10.1016/j.buildenv.2012.10.022
Lynch, 2006, 1
Lynch, 2008, The origins of computer weather prediction and climate modelling, J. Comput. Phys., 227, 3431, 10.1016/j.jcp.2007.02.034
Magata, M., 1965. A study of the sea breeze by numerical experimentation. Papers Meteor. Geophys. Tokyo, vol. 16. pp. 23–36.
Mason, 2005, Pulsed wall jet simulation of a stationary thunderstorm downburst: part A: physical structure and flow field characterization, J. Wind Eng. Ind. Aerodyn., 93, 557, 10.1016/j.jweia.2005.05.006
Mehta, 1985, Aerodynamics of sports balls, Annu. Rev. Fluid Mech., 17, 151, 10.1146/annurev.fl.17.010185.001055
Menter, F., Hemstrom, B., Henrikkson, M., Karlsson, R., Latrobe, A., Martin, A., Muhlbauer, P., Scheuerer, M., Smith, B., Takacs, T., Willemsen, S., 2002. CFD Best Practice Guidelines for CFD Code Validation for Reactor-Safety Applications, Report EVOLECORA-D01, Contract no. FIKS-CT-2001-00154, 2002.
Menter, 1994, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598, 10.2514/3.12149
Meroney, B.N., Meroney, R.N., 1989. Snow control with vortex and blower fences. In: Proceedings of the Conference on a Multidisciplinary Approach to Snow Engineering, Santa Barbara, California, 10–15 July 1988.
Meroney, R.N., Yamada, T., 1971. Wind tunnel and numerical experiments of two-dimensional stratified airflow over a heated island. Winter Annual Meeting of ASME, Nov. 28-Dec. 2, Washington DC.
Meroney, R.N., Yamada, T., 1972. Numerical and physical simulation of a stratified airflow over a series of heated islands. In: Proceedings of the Summer Simulation Conference, June 13–16, 1972, San Diego, California.
Meroney, 1980, Wind-tunnel simulation of the flow over hills and complex terrain, J. Ind. Aerodyn., 5, 297, 10.1016/0167-6105(80)90039-2
Meroney, 1982, Wind-tunnel experiments on dense gas dispersion, J. Hazard. Mater., 6, 85, 10.1016/0304-3894(82)80035-6
Meroney, 1984, Wind-tunnel simulation of field dispersion tests (by the U.K. Health and Safety Executive) of water-spray curtains, Bound.-Layer Meteorol., 28, 107, 10.1007/BF00119459
Meroney, 1987, Validation of fluid modelling techniques for assessing hazards of dense gas cloud dispersion, J. Hazard. Mater., 15, 377, 10.1016/0304-3894(87)85036-7
Meroney, 1987, Guidelines for fluid modelling of dense gas cloud dispersion, J. Hazard. Mater., 17, 23, 10.1016/0304-3894(87)85040-9
Meroney, 1986, Heat transfer effects during cold dense gas dispersion: wind-tunnel simulation of cold gas spills, J. Heat Transf., 108, 9, 10.1115/1.3246911
Meroney, R.N., 1990. Fluid dynamics of flow over hills and mountains: insights obtained through physical modelling. Chapter 7 of AMS Monograph on Current Directions in Atmospheric Processes over Complex Terrain, AMS Monograph vol. 23, Nr. 45, June 1990, pp. 145–172.
Meroney, 1992, Operating ranges of meteorological wind tunnels for the simulation of convective boundary layer (CBL) phenomena, Bound.-Layer Meteorol., 61, 145, 10.1007/BF02033999
Meroney, 1996, Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons, J. Wind Eng. Ind. Aerodyn., 62, 37, 10.1016/S0167-6105(96)00057-8
Meroney, 1997, Preface to special issue of second international symposium on Computational Wind Engineering (CWE-96), J. Wind Eng. Ind. Aerodyn., 67–68, vii, 10.1016/S0167-6105(97)80159-6
Meroney, R.N., Neff, D.E., Chang, C.H., 2002. Diagnosis of a sick building by the wind doctors. In: Proceedings of 2nd International Symposium on Advances in Wind and Structures (AWAS ׳02), 21–23 August 2002, Pusan Convention Center, Pusan, Korea.
Meroney, R.N., 2003. Fire whirls, fire tornadoes and firestorms: physical and numerical modelling. In: Proceedings of PHYSMOD2003: International Workshop on Physical Modelling of Flow and Dispersion Phenomena, 3–5 September 2003, Prato, Italy.
Meroney, R.N., 2004. Wind tunnel and numerical simulation of pollution dispersion: a hybrid approach. Paper for Invited Lecture at the Croucher Advanced Study Institute, Hong Kong University of Science and Technology, 6–10 December 2004.
Meroney, R.N. 2009. CFD prediction of airflow in buildings for natural ventilation. In: Proceedings 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico, pp. 1–11.
Meroney, R.N., 2014. Personal Commucation, March 7, 2014.
Miles, S.D., Westbury, P.S., 2002. Assessing CFD as a tool for practical wind engineering applications. In: Proceedings Fifth UK Conference on Wind Engineering, September.
Miller, 2013, Review of computer-aided numerical simulation in wind energy, Renew. Sustain. Energy Rev., 25, 122, 10.1016/j.rser.2013.03.059
Milliez, 2007, Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions, Bound.-Layer Meteorol., 122, 321, 10.1007/s10546-006-9110-4
Milliez, 2008, Computational fluid dynamical modelling of concentration fluctuations in an idealized urban area, Bound.-Layer Meteorol., 127, 241, 10.1007/s10546-008-9266-1
Mistriotis, 1997, Computational analysis of ventilation in greenhouses at zero-and low-wind-speeds, Agric. For. Meteorol., 88, 121, 10.1016/S0168-1923(97)00045-2
Mistriotis, 1997, Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics, Agric. For. Meteorol., 85, 217, 10.1016/S0168-1923(96)02400-8
Mistriotis, 2002, Numerical estimation of the internal and external aerodynamic coefficients of a tunnel greenhouse structure with openings, Comput. Electron. Agric., 34, 191, 10.1016/S0168-1699(01)00187-9
Mochida, 2011, Up-scaling CWE models to include mesoscale meteorological influences, J. Wind Eng. Ind. Aerodyn., 99, 187, 10.1016/j.jweia.2011.01.012
Mochida, 2008, Prediction of wind environment and thermal comfort at pedestrian level in urban area, J. Wind Eng. Ind. Aerodyn., 96, 1498, 10.1016/j.jweia.2008.02.033
Mochida, 1993, Numerical simulation of flow field around Texas Tech Building by Large Eddy Simulation, J. Wind Eng. Ind. Aerodyn., 46–47, 455, 10.1016/0167-6105(93)90312-C
Mochida, 2008, Examining tree canopy models for CFD prediction of wind environment at pedestrian level, J. Wind Eng. Ind. Aerodyn., 96, 1667, 10.1016/j.jweia.2008.02.055
Mochida, 2002, Comparison of various k–ε models and DSM applied to flow around a high-rise building—report on AIJ cooperative project for CFD prediction of wind environment, Wind Struct., 5, 227, 10.12989/was.2002.5.2_3_4.227
Mochida, 2005, Methods for controlling airflow in and around a building under cross-ventilation to improve indoor thermal comfort, J. Wind Eng. Ind. Aerodyn., 93, 437, 10.1016/j.jweia.2005.02.003
Mochida, 2006, Total analysis of cooling effects of cross-ventilation affected by microclimate around a building, Sol. Energy, 80, 371, 10.1016/j.solener.2005.08.014
Montazeri, 2010, Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling, Renew. Energy, 35, 1424, 10.1016/j.renene.2009.12.003
Montazeri, 2011, Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers, Build. Environ., 46, 370, 10.1016/j.buildenv.2010.07.031
Montazeri, 2013, CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis, Build. Environ., 60, 137, 10.1016/j.buildenv.2012.11.012
Montazeri, 2013, CFD evaluation of new second-skin facade concept for wind comfort on building balconies: case-study for the Park Tower in Antwerp, Build. Environ., 68, 179, 10.1016/j.buildenv.2013.07.004
Monteiro, 1996, On the use of Irwin and Preston wall shear stress probes in turbulent incompressible flows with pressure gradients, J. Wind Eng. Ind. Aerodyn., 64, 15, 10.1016/S0167-6105(96)00091-8
Moonen, 2006, Numerical modeling of the flow conditions in a low-speed closed-circuit wind tunnel, J. Wind Eng. Ind. Aerodyn., 94, 699, 10.1016/j.jweia.2006.02.001
Moonen, 2007, Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel, J. Wind Eng. Ind. Aerodyn., 95, 1289, 10.1016/j.jweia.2007.02.027
Moonen, 2012, Urban Physics: Effect of the micro-climate on comfort, health and energy demand, Front. Archit. Res., 1, 197, 10.1016/j.foar.2012.05.002
Moonen, 2013, Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting, Atmos. Environ., 75, 66, 10.1016/j.atmosenv.2013.04.016
Moussiopoulos, 2003, Modelling urban air pollution (Chap. 6), 121
Mueller, 2003, Aerodynamics of small vehicles, Annu. Rev. Fluid Mech., 35, 89, 10.1146/annurev.fluid.35.101101.161102
Murakami, 1990, Examining the k-ε model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube, J. Wind Eng. Ind. Aerodyn., 35, 87, 10.1016/0167-6105(90)90211-T
Murakami, 1990, Preface to special issue on computational wind engineering, J. Wind Eng. Ind. Aerodyn., 35, ix, 10.1016/0167-6105(90)90207-S
Murakami, 1990, Computational wind engineering, J. Wind Eng. Ind. Aerodyn., 36, 517, 10.1016/0167-6105(90)90335-A
Murakami, 1990, Numerical simulation of turbulent flowfield around cubic model: current status and applications of k–e model and LES, J. Wind Eng. Ind. Aerodyn., 33, 139, 10.1016/0167-6105(90)90030-G
Murakami, 1991, Wind tunnel test on velocity-pressure field of cross-ventilation with open windows, ASHRAE Trans., 97, 525
Murakami, 1993, Preface to the first international symposium on Computational Wind Engineering (CWE92), J. Wind Eng. Ind. Aerodyn., 46–47, 1, 10.1016/0167-6105(93)90109-2
Murakami, 1993, Comparison of various turbulence models applied to a bluff body, J. Wind Eng. Ind. Aerodyn., 46 and 47, 21, 10.1016/0167-6105(93)90112-2
Murakami, 1997, Current status and future trends in computational wind engineering, J. Wind Eng. Ind. Aerodyn., 67 and 68, 3, 10.1016/S0167-6105(97)00230-4
Murakami, 1998, Overview of turbulence models applied in CWE-1997, J. Wind Eng. Ind. Aerodyn., 74-76, 1, 10.1016/S0167-6105(98)00004-X
Murakami, 2008, Preface to the special issue of the fifth symposium on Computational Wind Engineering, J. Wind Eng. Ind. Aerodyn., 96, 1449, 10.1016/j.jweia.2008.02.064
Murakami, 1988, 3-D numerical simulation of airflow around a cubic model by means of the k–ε model, J. Wind Eng. Ind. Aerodyn., 31, 283, 10.1016/0167-6105(88)90009-8
Murakami, 1987, Three-dimensional numerical simulation of airflow around a cubic model by means of large eddy simulation, J. Wind Eng. Ind. Aerodyn., 25, 291, 10.1016/0167-6105(87)90023-7
Murakami, 1989, Three-dimensional numerical simulation of turbulent flow around buildings using the k−ε turbulence model, Build. Environ., 24, 51, 10.1016/0360-1323(89)90016-4
Murakami, 1992, Numerical study on velocity-pressure field and wind forces for bluff bodies by k–ε, ASM and LES, J. Wind Eng. Ind. Aerodyn., 44, 2841, 10.1016/0167-6105(92)90079-P
Murakami, 1999, CFD analysis of wind climate from human scale to urban scale, J. Wind Eng. Ind. Aerodyn., 81, 57, 10.1016/S0167-6105(99)00009-4
NEN, 2006a. Wind Comfort and Wind Danger in the Built Environment, NEN 8100 (in Dutch) Dutch Standard.
NEN, 2006b. Application of Mean Hourly Wind Speed Statistics for the Netherlands, NPR 6097:2006 (in Dutch). Dutch Practice Guideline.
Nicholls, 1993, Large eddy simulation of microburst winds flowing around a building, J. Wind Eng. Ind. Aerodyn., 46-47, 229, 10.1016/0167-6105(93)90288-Y
Nikas, 2010, Numerical study of a naturally cross-ventilated building, Energy Build., 42, 422, 10.1016/j.enbuild.2009.10.010
Nore, 2010, On CFD simulation of wind-induced airflow in narrow ventilated facade cavities: coupled and decoupled simulations and modelling limitations, Building and Environment, 45, 1834, 10.1016/j.buildenv.2010.02.014
Norton, 2006, Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: a review, Trends Food Sci. Technol., 17, 600, 10.1016/j.tifs.2006.05.004
Norton, 2007, Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review, Bioresour. Technol., 98, 2386, 10.1016/j.biortech.2006.11.025
Norton, 2009, Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics, Biosyst. Eng., 103, 78, 10.1016/j.biosystemseng.2009.02.007
Norton, 2010, Optimising the ventilation configuration of naturally ventilated livestock buildings for improved indoor environmental homogeneity, Build. Environ., 45, 983, 10.1016/j.buildenv.2009.10.005
Norton, 2010, Improving the representation of thermal boundary conditions of livestock during CFD modelling of the indoor environment, Comput. Electron. Agric., 73, 17, 10.1016/j.compag.2010.04.002
Oberkampf, 2004, Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev., 57, 345, 10.1115/1.1767847
Orlanski, 1975, A rational subdivision of scales for atmospheric processes, Bull. Am. Meteorol. Soc., 56, 527
Parente, 2011, Improved k–ε model and wall function formulation for the RANS simulation of ABL flows, J. Wind Eng. Ind. Aerodyn., 99, 267, 10.1016/j.jweia.2010.12.017
Paterson, 1986, Computation of wind flows over three-dimensional buildings, J. Wind Eng. Ind. Aerodyn., 24, 192, 10.1016/0167-6105(86)90022-X
Paterson, 1989, Simulation of wind flow around three-dimensional buildings, Build. Environ., 24, 39, 10.1016/0360-1323(89)90015-2
Paterson, 1990, Simulation of flow past a cube in a turbulent boundary layer, J. Wind Eng. Ind. Aerodyn., 35, 149, 10.1016/0167-6105(90)90214-W
Pearce, 1955, The calculation of the sea breeze circulation in terms of the differential heating across the coast line, Quart. J. R. Meteorol. Soc., 81, 351, 10.1002/qj.49708134906
Persoon, 2008, Impact of roof geometry on rain shelter in football stadia, J. Wind Eng. Ind. Aerodyn., 96, 1274, 10.1016/j.jweia.2008.02.036
Phillips, 1956, The general circulation of the atmosphere: a numerical experiment, Q. J. R. Meteorol. Soc., 82, 123, 10.1002/qj.49708235202
Phillips, 1960, On the problem of initial data for the primitive equations, Tellus, 12, 121, 10.1111/j.2153-3490.1960.tb01289.x
Pielke, 1997, Use of meteorological models in computational wind engineering, J. Wind Eng. Ind. Aerodyn., 67–68, 363, 10.1016/S0167-6105(97)00086-X
Platzman, 1979, The ENIAC computations of 1950 – gateway to numerical weather prediction, Bull. Am. Meteorol. Soc., 60, 302, 10.1175/1520-0477(1979)060<0302:TECOTN>2.0.CO;2
Porté-Agel, 2011, Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms, J. Wind Eng. Ind. Aerodyn., 99, 154, 10.1016/j.jweia.2011.01.011
Ramponi, 2012, CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters, Build. Environ., 53, 34, 10.1016/j.buildenv.2012.01.004
Ramponi, 2012, CFD simulation of cross-ventilation flow for different isolated building configurations: validation with wind tunnel measurements and analysis of physical and numerical diffusion effects, J. Wind Eng. Ind. Aerodyn., 104–106, 408, 10.1016/j.jweia.2012.02.005
Randerson, 1976, An overview of regional-scale numerical models, Bull. Am. Meteorol. Soc., 57, 797, 10.1175/1520-0477(1976)057<0797:OORSNM>2.0.CO;2
Reichrath, 2002, Using CFD to model the internal climate of greenhouses: past, present and future, Agronomie, 22, 3, 10.1051/agro:2001006
Richards, 1993, Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model, J. Wind Eng. Ind. Aerodyn., 46&47, 145, 10.1016/0167-6105(93)90124-7
Richards, 2002, Pedestrian level wind speeds in downtown Auckland, Wind Struct., 5, 151, 10.12989/was.2002.5.2_3_4.151
Richards, 2011, Appropriate boundary conditions for computational wind engineering models revisited, J. Wind Eng. Ind. Aerodyn., 99, 257, 10.1016/j.jweia.2010.12.008
Richardson, 1922
Roache, 1994, Perpective – a method for uniform reporting of grid refinement studies, J. Fluids Eng. – Trans. ASME, 116, 405, 10.1115/1.2910291
Roache, 1997, Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., 29, 123, 10.1146/annurev.fluid.29.1.123
Roache, 1986, Editorial policy statement on the control of numerical accuracy, J. Fluids Eng., 108, 2, 10.1115/1.3242537
Robins, 2003, Wind tunnel dispersion modelling some recent and not so recent achievements, J. Wind Eng. Ind. Aerodyn., 91, 1777, 10.1016/j.jweia.2003.09.025
Robins, 1977, Wind-tunnel investigation of plume dispersion in vicinity of a surface mounted cube. 1. Flow field, Atmos. Environ., 11, 291, 10.1016/0004-6981(77)90157-3
Robins, 1977, Wind-tunnel investigation of plume dispersion in vicinity of a surface mounted cube. 2. Concentration field, Atmos. Environ., 11, 299, 10.1016/0004-6981(77)90158-5
Robson, 2008, Ten steps applied to development and evaluation of process-based biogeochemical models of estuaries, Environ. Model. Softw., 23, 369, 10.1016/j.envsoft.2007.05.019
Rodi, 1997, Comparison of LES and RANS calculations of the flow around bluff bodies, J. Wind Eng. Ind. Aerodyn., 69–71, 55, 10.1016/S0167-6105(97)00147-5
Roy, 2005, Review of code and solution verification procedures for computational simulation, J. Comput. Phys., 205, 131, 10.1016/j.jcp.2004.10.036
Roy, C.J, Oberkampf, W.L., 2010. A complete framework for verification, validation, and uncertainty quantification in scientific computing. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4–7 January 2010, Orlando, Florida.
Roy, 2013, Review on the numerical investigations into the design and development of Savonius wind rotors, Renew. Sustain. Energy Rev., 24, 73, 10.1016/j.rser.2013.03.060
Salim, 2011, Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: comparison between RANS and LES, Build. Environ., 46, 1735, 10.1016/j.buildenv.2011.01.032
Salim, 2011, Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: comparison between RANS and LES, J. Wind Eng. Ind. Aerodyn., 99, 103, 10.1016/j.jweia.2010.12.002
Saloranta, 2011, Evaluation of a general CFD-solver for a micro-scale urban flow, Int. J. Environ. Pollut., 44, 368, 10.1504/IJEP.2011.038438
Sandberg, 2004, An alternative view on the theory of cross-ventilation, Int. J. Vent., 4, 409, 10.1080/14733315.2004.11683682
Sanderse, 2011, Review of computational fluid dynamics for wind turbine wake aerodynamics, Wind Energy, 14, 799, 10.1002/we.458
Santiago, 2010, Comparison between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes computations for the MUST field experiment. Part I: study of the flow for an incident wind directed perpendicularly to the front array of containers, Bound.-Layer Meteorol., 135, 109, 10.1007/s10546-010-9466-3
Sanz Rodrigo, 2012, Wind engineering in the integrated design of princess Elisabeth Antarctic base, Build. Environ., 52, 1, 10.1016/j.buildenv.2011.12.023
Sasaki, 1997, Application of infrared thermography and a knowledge-based system to the evaluation of the pedestrian-level wind environment around buildings, J. Wind Eng. Ind. Aerodyn., 67–68, 873, 10.1016/S0167-6105(97)00125-6
Sawyer, 1960, Numerical calculation of the displacements of a stratified airstream crossing a ridge, Quart. J. Roy. Meteorol. Soc., 86, 326, 10.1002/qj.49708636905
Scaperdas, 2004, Thematic Area 4: best practice advice for civil construction and HVAC, QNET-CFD Netw. Newsl., 2, 28
Schatzmann, 1997, Some remarks on the validation of small-scale dispersion models with field and laboratory data, J. Wind Eng. Ind. Aerodyn., 67 and 68, 885, 10.1016/S0167-6105(97)00126-8
Schatzmann, 2011, Issues with validation of urban flow and dispersion CFD models, J. Wind Eng. Ind. Aerodyn., 99, 169, 10.1016/j.jweia.2011.01.005
Schlünzen, K.H., 1996. Validierung hochauflösender Regionalmodelle. Ber. aus dem Zentrum f. Meeres- und Klimaforschung, Meteorologisches Institut, Universität Hamburg, A23, 184. 〈http://www.bis.zmaw.de/fileadmin/Bib/Voll texte/ZMK-A23.pdf〉.
Schlünzen, 2011, Joint modelling of obstacle induced and mesoscale changes—current limits and challenges, J. Wind Eng. Ind. Aerodyn., 99, 217, 10.1016/j.jweia.2011.01.009
Seifert, 2006, Calculation of wind-driven cross ventilation in buildings with large openings, J. Wind Eng. Ind. Aerodyn., 94, 925, 10.1016/j.jweia.2006.04.002
Selvam, 1997, Numerical simulation of pollutant dispersion around a building using FEM, J. Wind Eng. Ind. Aerodyn., 67&68, 805, 10.1016/S0167-6105(97)00120-7
Sengupta, 2008, Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds, J. Wind Eng. Ind. Aerodyn., 96, 345, 10.1016/j.jweia.2007.09.001
Sengupta, 2008, Transient loads on buildings in microburst and tornado winds, J. Wind Eng. Ind. Aerodyn., 96, 2137
Shah, 1997, A fluid mechanicians view of wind engineering: large eddy simulation of flow past a cubic obstacle, J. Wind Eng. Ind. Aerodyn., 67–68, 211, 10.1016/S0167-6105(97)00074-3
Shen, 2012, Comparison of different methods for estimating ventilation rates through wind driven ventilated buildings, Energy Build., 54, 297, 10.1016/j.enbuild.2012.07.017
Shih, 1995, A new k–ε eddy viscosity model for high Reynolds number turbulent flows, Comput. Fluids, 24, 227, 10.1016/0045-7930(94)00032-T
Shin, S.H., Meroney, R.N., 1988. Surface pattern comparability of wind-tunnel simulations of the Thorney Island dense gas dispersion trials. 17th NATO/COMS International Technical Meeting on Air Pollution Modelling and its Application. Cambridge, UK, 19–22 September 1988, Downing College, Cambridge University.
Shklyar, 2004, Numerical model of the three-dimensional isothermal flow patterns and mass fluxes in a pitched-roof greenhouse, J. Wind Eng. Ind. Aerodyn., 92, 1039, 10.1016/j.jweia.2004.05.008
Shuman, 1989, History of numerical weather prediction at the National Meteorological Center, Weather Forecast, 4, 286, 10.1175/1520-0434(1989)004<0286:HONWPA>2.0.CO;2
Shuman, 1968, An operational six-layer primitive equation model, J. Appl. Meteorol., 7, 525, 10.1175/1520-0450(1968)007<0525:AOSLPE>2.0.CO;2
Smagorinsky, 1953, The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere, Q. J. R. Meteorol. Soc., 79, 342, 10.1002/qj.49707934103
Smagorinsky, 1958, On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region, Mon. Weather Rev., 86, 457, 10.1175/1520-0493(1958)086<0457:OTNIOT>2.0.CO;2
Smagorinsky, 1963, General circulation experiments with the primitive equations I. The basic experiment, Mon. Weather Rev., 91, 99, 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Smagorinsky, 1969, Problems and promises of deterministic extended range forecasting, Bull. Am. Meteorol. Soc., 50, 286, 10.1175/1520-0477-50.5.286
Smedley, 1993, Snowdrifting simulation around Davis Station workshop, Antartica, J. Wind Eng. Ind. Aerodyn., 50, 153, 10.1016/0167-6105(93)90070-5
Solari, 2007, The International Association for Wind Engineering (IAWE): progress and prospects, J. Wind Eng. Ind. Aerodyn., 95, 813, 10.1016/j.jweia.2007.01.010
Sorensen, 2011, Aerodynamic aspects of wind energy conversion, Annu. Rev. Fluid Mech., 43, 427, 10.1146/annurev-fluid-122109-160801
Souster, 1979
Squires, 2008, Prediction of the flow over a circular cylinder at high Reynolds number using detached-eddy simulation, J. Wind Eng. Ind. Aerodyn., 96, 1528, 10.1016/j.jweia.2008.02.053
Stathopoulos, 1997, Computational Wind Engineering: past achievements and future challenges, J. Wind Eng. Ind. Aerodyn., 67–68, 509, 10.1016/S0167-6105(97)00097-4
Stathopoulos, 2002, The numerical wind tunnel for industrial aerodynamics: real or virtual in the new millennium?, Wind Struct., 5, 193, 10.12989/was.2002.5.2_3_4.193
Stathopoulos, 2003, Wind loads on low buildings: in the wake of Alan Davenport׳s contributions, J. Wind Eng. Ind. Aerodyn., 91, 1565, 10.1016/j.jweia.2003.09.019
Stathopoulos, 2006, Pedestrian level winds and outdoor human comfort, J. Wind Eng. Ind. Aerodyn., 94, 769, 10.1016/j.jweia.2006.06.011
Stathopoulos, 1986, Wind environmental conditions in passages between buildings, J. Wind Eng. Ind. Aerodyn., 24, 19, 10.1016/0167-6105(86)90070-X
Stathopoulos, 1990, Boundary treatment for the computation of 3D turbulent conditions around buildings, J. Wind Eng. Ind. Aerodyn., 35, 177, 10.1016/0167-6105(90)90215-X
Stathopoulos, 1996, Computer simulation of wind environmental conditions around buildings, Eng. Struct., 18, 876, 10.1016/0141-0296(95)00155-7
Stathopoulos, T., 2013. Personal Communication, 9 May 2013.
Stavridou, 2013, Natural ventilation of buildings due to buoyancy assisted by wind: investigating cross ventilation with computational and laboratory simulation, Build. Environ., 66, 104, 10.1016/j.buildenv.2013.04.011
Stavrakakis, 2008, Natural cross-ventilation in buildings: building-scale experiments, numerical simulation and thermal comfort evaluation, Energy Build., 40, 1666, 10.1016/j.enbuild.2008.02.022
Straw, 2000, Experimental measurements and computations of the wind-induced ventilation of a cubic structure, J. Wind Eng. Ind. Aerodyn., 88, 213, 10.1016/S0167-6105(00)00050-7
Sumner, 2010, CFD in wind energy: the virtual, multiscale wind tunnel, Energies, 3, 989, 10.3390/en3050989
Surry, 1994, Wind, rain and the building envelope: a status report of ongoing research at the University of Western Ontario, J. Wind Eng. Ind. Aerodyn., 53, 19, 10.1016/0167-6105(94)90016-7
Tablada, 2009, On natural ventilation and thermal comfort in compact urban environments—the Old Havana case, Build. Environ., 44, 1943, 10.1016/j.buildenv.2009.01.008
Tabor, 2010, Inlet conditions for large eddy simulation: a review, Comput. Fluids, 39, 553, 10.1016/j.compfluid.2009.10.007
Taddei, 2003, A reference framework for the aerodynamic and aeroelastic analysis of long span bridges with computational fluid dynamic, Syst.-Based Vis. Strateg. Creat. Des., 1-3, 2511
Takagi, 1990, Application of computers to automobile aerodynamics, J. Wind Eng. Ind. Aerodyn., 33, 419, 10.1016/0167-6105(90)90057-J
Takakura, 1993, Numerical simulation of flowfield around buildings in an urban area, J. Wind Eng. Ind. Aerodyn., 46–47, 765, 10.1016/0167-6105(93)90350-W
Tamura, 1999, Reliability on CFD estimation for wind-structure interaction problems, J. Wind Eng. Ind. Aerodyn., 81, 117, 10.1016/S0167-6105(99)00012-4
Tamura, 2008, Towards practical use of LES in wind engineering, J. Wind Eng. Ind. Aerodyn., 96, 1451, 10.1016/j.jweia.2008.02.034
Tamura, 1997, Numerical prediction of wind loading on buildings and structures – activities of AIJ cooperative project on CFD, J. Wind Eng. Ind. Aerodyn., 67-68, 671, 10.1016/S0167-6105(97)00109-8
Tamura, 2008, AIJ guide for numerical prediction of wind loads on buildings, J. Wind Eng. Ind. Aerodyn., 96, 1974, 10.1016/j.jweia.2008.02.020
Tamura, 2002, Recent topics in wind engineering focusing on monitoring techniques, Adv. Build. Technol., 65, 10.1016/B978-008044100-9/50010-3
Tan, 2005, Application of integrating multi-zone model with CFD simulation to natural ventilation prediction, Energy Build., 37, 1049, 10.1016/j.enbuild.2004.12.009
Tang, 2004, Erosion of limestone building surfaces caused by wind-driven rain. 2. Numerical modelling, Atmos. Environ., 38, 5601, 10.1016/j.atmosenv.2004.06.014
Tang, 2004, Erosion of limestone building surfaces caused by wind-driven rain: 1. Field measurements, Atmos. Environ., 38, 5589, 10.1016/j.atmosenv.2004.06.030
Tari, 2010, Experimental investigation of tornado-like vortex dynamics with swirl ratio: the mean and turbulent flow fields, J. Wind Eng. Ind. Aerodyn., 98, 936, 10.1016/j.jweia.2010.10.001
Taylor, 1974, A model of atmospheric boundary-layer flow above an isolated two-dimensional ‘hill’; an example of flow above ‘gentle topography’, Bound.-Layer Meteorol., 7, 349, 10.1007/BF00240837
Teitel, 2008, Effect of wind direction on greenhouse ventilation rate, airflow patterns and temperature distributions, Biosyst. Eng., 101, 351, 10.1016/j.biosystemseng.2008.09.004
Tezduyar, 1999, CFD methods for three-dimensional computation of complex flow problems, J. Wind Eng. Ind. Aerodyn., 81, 97, 10.1016/S0167-6105(99)00011-2
To, 1995, Evaluation of pedestrian-level wind environment around a row of tall buildings using a quartile-level wind speed descripter, J. Wind Eng. Ind. Aerodyn., 54–55, 527, 10.1016/0167-6105(94)00069-P
Tominaga, 1997, CFD prediction of gaseous diffusion around a cubic model using a dynamics mixed SGS model based on composite grid technique, J. Wind Eng. Ind. Aerodyn., 67-68, 827, 10.1016/S0167-6105(97)00122-0
Tominaga, 2007, Turbulent Schmidt numbers for CFD analysis with various types of flowfield, Atmos. Environ., 41, 8091, 10.1016/j.atmosenv.2007.06.054
Tominaga, 2009, Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k–ε models, Atmos. Environ., 43, 3200, 10.1016/j.atmosenv.2009.03.038
Tominaga, 2010, Numerical simulation of dispersion around an isolated cubic buildings: model evaluation of RANS and LES, Build. Environ., 45, 2231, 10.1016/j.buildenv.2010.04.004
Tominaga, 2013, CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modelling techniques, Atmos. Environ., 79, 716, 10.1016/j.atmosenv.2013.07.028
Tominaga, 2008, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerodyn., 96, 1749, 10.1016/j.jweia.2008.02.058
Tominaga, 2008, Comparison of various revised k–ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer, J. Wind Eng. Ind. Aerodyn., 96, 389, 10.1016/j.jweia.2008.01.004
Tominaga, 2011, CFD modeling of snowdrift around a building: an overview of models and evaluation of a new approach, Build. Environ., 46, 899, 10.1016/j.buildenv.2010.10.020
Tominaga, 2013, Cross comparisons of CFD results of wind and dispersion fields for MUST experiment: evaluation exercises by AIJ, J. Asian Archit. Building Eng., 12, 117, 10.3130/jaabe.12.117
Tsang, 2012, Wind tunnel study of pedestrian level wind environment around tall buildings: effects of building dimensions, separation and podium, Build. Environ., 49, 167, 10.1016/j.buildenv.2011.08.014
Tucker, P.G., Mosquera, A., 2001. NAFEMS Introduction to Grid and Mesh Generation for CFD. NAFEMS CFD Working Group, R0079, 56 pp.
Tyagi, 2012, Formation, potential and abatement of plume from wet cooling towers: a review, Renew. Sustain. Energy Rev., 16, 3409, 10.1016/j.rser.2012.01.059
UWO, 2014. 〈http://www.eng.uwo.ca/windeee/facilities.html〉. University of Western Ontario. (Retrieved March 04.03.14.)
Uematsu, 1992, Effects of the corner shape of high-rise buildings on the pedestrian-level wind environment with consideration for mean and fluctuating wind speeds, J. Wind Eng. Ind. Aerodyn., 44, 2289, 10.1016/0167-6105(92)90019-7
Van Beeck, J.P.A.J., Dezsö, G., Planquart, P., 2009. Microclimate Assessment by Sand Erosion and Irwin Probes for Atmospheric Boundary Layer Wind Tunnels. PHYSMOD 2009, Von Karman Institute (VKI), Sint-Genesius-Rode, Belgium.
van Hooff, 2010, Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: a case study for the Amsterdam ArenA stadium, Environ. Model. Softw., 25, 51, 10.1016/j.envsoft.2009.07.008
van Hooff, 2010, On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium, Comput. Fluids, 39, 1146, 10.1016/j.compfluid.2010.02.004
van Hooff, 2011, A venturi-shaped roof for wind-induced natural ventilation of buildings: wind tunnel and CFD evaluation of different design configurations, Build. Environ., 46, 1797, 10.1016/j.buildenv.2011.02.009
van Hooff, 2011, 3D CFD simulations of wind flow and wind-driven rain shelter in sports stadia: influence of stadium geometry, Build. Environ., 46, 22, 10.1016/j.buildenv.2010.06.013
van Hooff, 2012, Full-scale measurements of indoor environmental conditions and natural ventilation in a large semi-enclosed stadium: possibilities and limitations for CFD validation, J. Wind Eng. Ind. Aerodyn., 104–106, 330, 10.1016/j.jweia.2012.02.009
van Hooff, 2013, CFD evaluation of natural ventilation of indoor environments by the concentration decay method: CO2 gas dispersion from a semi-enclosed stadium, Build. Environ., 61, 1, 10.1016/j.buildenv.2012.11.021
van Mook, 2002
Vardoulakis, 2003, Modelling air quality in street canyons: a review, Atmos. Environ., 37, 155, 10.1016/S1352-2310(02)00857-9
Vasilic-Melling, 1977
Vermeer, 2003, Wind turbine wake aerodynamics, Prog. Aerosp. Sci., 39, 467, 10.1016/S0376-0421(03)00078-2
Wang, 2008, Coupled simulations for naturally ventilated residential buildings, Autom. Constr., 17, 386, 10.1016/j.autcon.2007.06.004
Wallington, 1958, A numerical study of the wavelength and amplitude of lee waves’, Quart, J. Roy. Meteorol. Soc., 84, 38, 10.1002/qj.49708435905
Wang, 2009, Coupled simulations for naturally ventilated rooms between building simulation (BS) and computational fluid dynamics (CFD) for better prediction of indoor thermal environment, Build. Environ., 44, 95, 10.1016/j.buildenv.2008.01.015
Westbury, P.S., Miles, S.D., Stathopoulos, T., 2002. CFD Application on the Evaluation of Pedestrian-level Winds. Workshop on Impact of Wind and Storm on City Life and Built Environment, Cost Action C14, CSTB, June 3–4, Nantes, France.
Wilcox, 1998
Willemsen, 2007, Design for wind comfort in The Netherlands: procedures, criteria and open research issues, J. Wind Eng. Ind. Aerodyn., 95, 1541, 10.1016/j.jweia.2007.02.006
Wise, A.F.E., 1970. Wind effects due to groups of buildings. In: Proceedings of the Royal Society Symposium Architectural Aerodynamics, London.
Wisse, J.A., Willemsen, E., 2003. Standardization of wind comfort evaluation in the Netherlands. In: Proceedings of the 11th International Conference on Wind Engineering (11ICWE), Lubbock, Texas.
Wood, 2001, Physical and numerical modelling of thunderstorm downbursts, J. Wind Eng. Ind. Aerodyn., 89, 535, 10.1016/S0167-6105(00)00090-8
Wood, 2000, Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling, Bound.-Layer Meteorol., 96, 11, 10.1023/A:1002017732694
Wright, 2006, Unsteady CFD Simulations for natural ventilation, Int. J. Vent., 5, 13, 10.1080/14733315.2006.11683720
Wright, 2001, Development and validation of a non-linear k-epsilon: model for flow over a full-scale building, Wind Struct., 4, 177, 10.12989/was.2001.4.3.177
Wu, 1994, Further experiments on Irwin׳s surface wind sensor, J. Wind Eng. Ind. Aerodyn., 53, 441, 10.1016/0167-6105(94)90095-7
Wu, 1997, Application of infrared thermography for pedestrian wind evaluation, 123, 978
Wu, 1992, Applications of digital image processing in wind engineering, J. Wind Eng. Ind. Aerodyn., 42, 999, 10.1016/0167-6105(92)90106-K
Wu, 2011, Myth of ecological architecture designs: comparison between design concept and computational analysis results of natural-ventilation for tjibaou cultural center in new caledonia, Energy Build., 43, 2788, 10.1016/j.enbuild.2011.06.035
Wu, 2012, Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD), Atmos. Environ., 63, 179, 10.1016/j.atmosenv.2012.09.042
Xie, 2008, Efficient generation of inflow conditions for large eddy simulation of street-scale flows, Flow, Turbul. Combust., 81, 449, 10.1007/s10494-008-9151-5
Xu, 2008, Scale, boundary and inlet condition effects on impinging jets, J. Wind Eng. Ind. Aerodyn., 96, 2383, 10.1016/j.jweia.2008.04.002
Yakhot, 1986, Renormalization group analysis of turbulence, J. Sci. Comput., 1, 3, 10.1007/BF01061452
Yamada, 1996, A visual technique for the evaluation of the pedestrian-level wind environment around buildings by using infrared thermography, J. Wind Eng. Ind. Aerodyn., 65, 261, 10.1016/S0167-6105(97)00045-7
Yamada, 2011, Downscaling mesoscale meteorological models for computational wind engineering applications, J. Wind Eng. Ind. Aerodyn., 99, 199, 10.1016/j.jweia.2011.01.024
Yamada, T., Meroney, R.N. 1972. Numerical and wind tunnel simulation of airflow over an obstacle. National Conference on Atmospheric Waves, American Meteorological Society, Salt Lake City, October 12-15, 1971.
Yang, 2009, New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering, J. Wind Eng. Ind. Aerodyn., 97, 88, 10.1016/j.jweia.2008.12.001