4D printing of core–shell hydrogel capsules for smart controlled drug release

Bio-Design and Manufacturing - Tập 5 - Trang 294-304 - 2022
Shuo Zu1, Zhihui Zhang1, Qingping Liu1, Zhenguo Wang1, Zhengyi Song1, Yunting Guo1, Yuanzhu Xin2, Shuang Zhang1
1Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, China
2School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China

Tóm tắt

Personalized drugs, as well as disease-specific and condition-dependent drug release, have been highly desired in drug delivery systems for effective and safe therapies. Four-dimensional (4D) printing, as a newly emerging technique to develop drug capsules, displays unique advantages that can autonomously control drug release according to the actual physiological circumstances. Herein, core–shell structured hydrogel capsules were developed using a multimaterial extrusion-based 4D printing method, which consists of a model drug as the core and UV cross-linked poly(N-isopropylacrylamide) (PNIPAM) hydrogel as the shell. Owing to the lower critical solution temperature (LCST)-induced shrinking/swelling properties, the prepared PNIPAM hydrogel capsules showed temperature-responsive drug release along with the topography changes in the cross-linked PNIPAM network. The in vitro drug release test confirmed that the PNIPAM hydrogel capsules can autonomously control their drug release behaviors according to changes in ambient temperature. Moreover, the increased shell thickness of these capsules causes an obvious reduction in drug release rate, distinctly indicating that the drug release behavior can be well adjusted by setting the shell thickness of the capsules. The proposed 4D printing strategy pioneers the paradigm of smart drug release by showing great potential in the smart controlled release of drugs and macromolecular active agents.

Tài liệu tham khảo

Martinez PR, Goyanes A, Basit AW et al (2017) Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm 532(1):313–317. https://doi.org/10.1016/j.ijpharm.2017.09.003 Tan YJN, Yong WP, Kochhar JS et al (2020) On-demand fully customizable drug tablets via 3D printing technology for personalized medicine. J Control Release 322:42–52. https://doi.org/10.1016/j.jconrel.2020.02.046 Ilbawi AM, Anderson BO (2015) Cancer in global health: how do prevention and early detection strategies relate? Sci Transl Med 7(278):278cm1. https://doi.org/10.1126/scitranslmed.3008853 Alomari M, Mohamed FH, Basit AW et al (2015) Personalised dosing: printing a dose of one’s own medicine. Int J Pharm 494(2):568–577. https://doi.org/10.1016/j.ijpharm.2014.12.006 Goyanes A, Wang J, Buanz A et al (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 12(11):4077–4084. https://doi.org/10.1021/acs.molpharmaceut.5b00510 Sun Y, Soh S (2015) Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater 27(47):7847–7853. https://doi.org/10.1002/adma.201504122 Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363(4):301–304. https://doi.org/10.1056/NEJMp1006304 Wening K, Breitkreutz J (2011) Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm 404(1):1–9. https://doi.org/10.1016/j.ijpharm.2010.11.001 Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Del Rev 64(13):1394–1416. https://doi.org/10.1586/erm.13.15 Murphy S, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958 Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162. https://doi.org/10.1016/j.bushor.2011.11.003 Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704–711 (PMCID: PMC6139809. PMID: 30228688) Rowe CW, Katstra WE, Palazzolo RD et al (2000) Multimechanism oral dosage forms fabricated by three dimensional printing™. J Control Release 66(1):11–17. https://doi.org/10.1016/s0168-3659(99)00224-2 Okwuosa TC, Stefaniak D, Arafat B et al (2016) A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res 33(11):2704–2712. https://doi.org/10.1007/s11095-016-1995-0 Goyanes A, Buanz ABM, Basit AW et al (2014) Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 476(1):88–92. https://doi.org/10.1016/j.ijpharm.2014.09.044 Goyanes A, Chang H, Sedough D et al (2015) Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 496(2):414–420. https://doi.org/10.1016/j.ijpharm.2015.10.039 Okwuosa TC, Pereira BC, Arafat B et al (2017) Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res 34(2):427–437. https://doi.org/10.1007/s11095-016-2073-3 Wang J, Goyanes A, Gaisford S et al (2016) Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm 503(1):207–212. https://doi.org/10.1016/j.ijpharm.2016.03.016 Martinez PR, Goyanes A, Basit AW et al (2018) Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets. AAPS PharmSciTech 19(8):3355–3361. https://doi.org/10.1208/s12249-018-1075-3 Khaled SA, Burley JC, Alexander MR et al (2014) Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 461(1–2):105–111. https://doi.org/10.1016/j.ijpharm.2013.11.021 Khaled SA, Burley JC, Alexander MR et al (2015) 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 217:308–314. https://doi.org/10.1016/j.jconrel.2015.09.028 Fina F, Goyanes A, Gaisford S et al (2017) Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm 529(1):285–293. https://doi.org/10.1016/j.ijpharm.2017.06.082 Boehm RD, Miller PR, Daniels J et al (2014) Inkjet printing for pharmaceutical applications. Mater Today 17(5):247–252. https://doi.org/10.1016/j.mattod.2014.04.027 Daly R, Harrington TS, Martin GD et al (2015) Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm 494(2):554–567. https://doi.org/10.1016/j.ijpharm.2015.03.017 Dong Y, Wang S, Ke Y et al (2020) 4D printed hydrogels: fabrication, materials, and applications. Adv Mater Technol 5(6):2000034. https://doi.org/10.1002/admt.202000034 Alhnan MA, Okwuosa TC, Sadia M et al (2016) Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res 33(8):1817–1832. https://doi.org/10.1007/s11095-016-1933-1 Fan DY, Li Y, Wang X et al (2020) Progressive 3D printing technology and its application in medical materials. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00122 Castilho M, Levato R, Bernal PN et al (2021) Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromol 22(2):855–866. https://doi.org/10.1021/acs.biomac.0c01577 Ge Q, Dunn C, Qi H et al (2014) Active origami by 4D printing. Smart Mater Struct 23(9):094007. https://doi.org/10.1088/0964-1726/23/9/094007 Lee AY, An J, Chua CK (2017) Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 3(5):663–674. https://doi.org/10.1016/J.ENG.2017.05.014 Lee J, Kim HC, Choi JW et al (2017) A review on 3D printed smart devices for 4D printing. Int J Precis Eng Manuf-Green Technol 4(3):373–383. https://doi.org/10.1007/s40684-017-0042-x Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027 Dreiss CA (2020) Hydrogel design strategies for drug delivery. Curr Opin Colloid Interface Sci 48:1–17. https://doi.org/10.1016/j.cocis.2020.02.001 Zhang Y, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356(6337):eaaf3627. https://doi.org/10.1126/science.aaf3627 Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50(4):357–364. https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4%3c357::AID-BIT2%3e3.0.CO;2-K Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453. https://doi.org/10.1002/bit.25160 Vedadghavami A, Minooei F, Mohammadi MH et al (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63. https://doi.org/10.1016/j.actbio.2017.07.028 Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880. https://doi.org/10.1021/cr000108x Zhuo RX, Li W (2003) Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J Polym Sci Part A Polym Chem 41(1):152–159. https://doi.org/10.1002/pola.10570 Li B, Gao Y, Li X et al (2011) Chitosan hydrogels with 3D Liesegang ring structure for rifampicin release. J Control Release 152:e47–e49. https://doi.org/10.1016/j.jconrel.2011.08.114 Kim H, Sohn H (2020) Oxidized porous silicon nanoparticles covalent-bonded with levofloxacin in hydrogel polymer as a drug delivery system. J Nanosci Nanotechnol 20(8):4619–4623. https://doi.org/10.1166/jnn.2020.17843 Olmos-Juste R, Alonso-Lerma B, Pérez-Jiménez R et al (2021) 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydr Polym 264:118026. https://doi.org/10.1016/j.carbpol.2021.118026 Croitoru-Sadger T, Yogev S, Shabtay-Orbach A et al (2019) Two-component cross-linkable gels for fabrication of solid oral dosage forms. J Control Release 303:274–280. https://doi.org/10.1016/j.jconrel.2019.04.021 Kamlow MA, Vadodaria S, Gholamipour-Shirazi A et al (2021) 3D printing of edible hydrogels containing thiamine and their comparison to cast gels. Food Hydrocoll 116(5):106550. https://doi.org/10.1016/j.foodhyd.2020.106550 Haring AP, Tong Y, Halper J et al (2018) Programming of multicomponent temporal release profiles in 3D printed polypills via core-shell, multilayer, and gradient concentration profiles. Adv Healthc Mater 7(16):1800213. https://doi.org/10.1002/adhm.201800213 Wang Y, Miao Y, Zhang J et al (2018) Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater Sci Eng C 84:44–51. https://doi.org/10.1016/j.msec.2017.11.025 Han D, Lu ZC, Chester SA et al (2018) Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep 8(1):1963. https://doi.org/10.1038/s41598-018-20385-2 Ziolkowski B, Ates Z, Gallagher S et al (2013) Mechanical properties and UV curing behavior of poly(N-isopropylacrylamide) in phosphonium-based ionic liquids. Macromol Chem Phys 214(7):787–796. https://doi.org/10.1002/macp.201200616 Lee H, Ko SY, Park JO et al (2014) Fabrication of N-isopropylacrylamide (NIPAAM) based micro-hydrogel using UV LED microscope. In: 14th International conference on control, automation and systems. pp 342–344 Schild HG (1992) Poly(N-isopropylacrylamide):experiment, theory and application. Prog Polym Sci 17(2):163–249. https://doi.org/10.1016/0079-6700(92)90023-R Chen Z, Zhao D, Liu B et al (2019) 3D printing of multifunctional hydrogels. Adv Funct Mater 29(20):1900971. https://doi.org/10.1002/adfm.201900971 Chimene D, Lennox KK, Kaunas RR et al (2016) Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 44(6):2090–2102. https://doi.org/10.1007/s10439-016-1638-y He L, Zuo Q, Xie S et al (2011) Intelligent hydrogels for drug delivery system. Recent Pat Drug Deliv Formul 5(3):265–274. https://doi.org/10.2174/187221111797200533 Waalen J, Buxbaum JN (2011) Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J Gerontol A Biol Sci Med Sci 66(5):487–492. https://doi.org/10.1093/gerona/glr001 Belezia BF, da Paixão LC, Diniz TR et al (2007) Electrocardiographic manifestations of hypothermia and the “J (Osborn) wave.” Crit Care 11(3):P45. https://doi.org/10.1186/cc5832 Afrassiabi A, Hoffman AS, Cadwell LA (1987) Effect of temperature on the release rate of biomolecules from thermally reversible hydrogels. J Membr Sci 33(2):191–200. https://doi.org/10.1016/S0376-7388(00)80377-4 Huffman A, Afrassiabi A, Dong L (1986) Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions. J Control Release 4(3):213–222. https://doi.org/10.1016/0168-3659(86)90005-2 Li J, Mooney D (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071. https://doi.org/10.1038/natrevmats.2016.71 Young ME, Carroad PA, Bell RL (1980) Estimation of diffusion coefficients of proteins. Biotechnol Bioeng 22(5):947–955. https://doi.org/10.1002/bit.260220504 Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Del Rev 53(3):321–339. https://doi.org/10.1016/s0169-409x(01)00203-4 Brazel CS, Peppas NA (2000) Modeling of drug release from swellable polymers. Eur J Pharm Biopharm 49(1):47–58. https://doi.org/10.1016/s0939-6411(99)00058-2 Hutchinson A, Olinsky A, Landau L (2010) Long term atropine in chronic severe childhood asthma. Aust Paediatr J 16(4):267–269. https://doi.org/10.1111/j.1440-1754.1980.tb01313.x Xu J, Han QB, Li SL et al (2013) Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem Rev 12(2):341–367. https://doi.org/10.1007/s11101-013-9310-8