4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement

Oliver David Krieg1,2, Simon Poppinga3,4, Max D. Mylo5,4, Anna S. Westermeier4, Bernd Bruchmann6, Achim Menges1, Thomas Speck5,3,4
1Institute for Computational Design and Construction (ICD), University of Stuttgart, Stuttgart, Germany
2School of Architecture, University of Waterloo, Cambridge, Ontario, Canada
3Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
4Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
5Cluster of Excellence livMatS, University of Freiburg, Freiburg im Breisgau, Germany
6BASF SE Advanced Materials and Systems Research, Ludwigshafen, Germany

Tóm tắt

We developed biomimetic hygro-responsive composite polymer scales inspired by the reversible shape-changes of Bhutan pine ( Pinus wallichiana ) cone seed scales. The synthetic kinematic response is made possible through novel four-dimensional (4D) printing techniques with anisotropic material use, namely copolymers with embedded cellulose fibrils and ABS polymer. Multi-phase motion like the subsequent transversal and longitudinal bending deformation during desiccation of a natural pinecone scale can be structurally programmed into such printed hygromorphs. Both the natural concept generator (Bhutan pinecone scale) and the biomimetic technical structure (4D printed scale) were comparatively investigated as to their displacement and strain over time via three-dimensional digital image correlation methods. Our bioinspired prototypes can be the basis for tailored autonomous and self-sufficient flap and scale structures performing complex consecutive motions for technical applications, e.g. in architecture and soft robotics. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’.

Từ khóa


Tài liệu tham khảo

Poppinga S, 2016, Biomimetic research for architecture and building construction: biological design and integrative structures. Biologically-inspired systems, 169, 10.1007/978-3-319-46374-2_9

10.1098/rsif.2015.0598

10.1016/j.cad.2014.01.005

10.1088/1748-3190/12/1/011001

10.1007/978-3-319-79099-2_18

10.1089/3dp.2015.0022

10.1038/nmat4544

10.1016/j.matdes.2016.02.018

10.1126/sciadv.1602890

10.1002/advs.201800703

10.1098/rsta.2009.0003

10.1002/bies.201200175

10.1088/1361-665X/aa640f

10.1515/9783035617917

Shaw GRS, 1914, The genus pinus.

Poppinga S Speck T. 2015 New insights into the passive nastic motions of pine cone scales and false indusia in ferns. In Proc. of the 8th Plant Biomechanics Int. Conf. Nagoya Japan.

10.1093/jof/62.8.538

10.1038/37745

10.1098/rsif.2009.0184

10.1038/srep18105

10.1038/srep40302

Le Duigou A Beaugrand J Castro M. 2017 Compréhension des mécanismes d'actionneurdes pommes de pin pour améliorer les performances des biocomposites hygromorphes. Journées Nationales sur les Composites École des Ponts ParisTech (ENPC) Jun 2017 77455 Champs-sur-Marne France. hal-01623672.

10.1002/app.43671

10.1177/002199836900300204

10.1002/pen.760171207

10.1002/mawe.19920230509

10.1002/adma.201401804

10.1002/app.12496

10.1016/j.compscitech.2016.11.008

Correa D, 2015, 3D printed hygroscopic programmable material systems, MRS Proc., 1800, 1016

10.1108/RPJ-08-2015-0095

Månsson A. 2017 How moist filaments will screw up your 3D-printing. See https://3dprinterchat.com/2016/12/how-moist-filaments-will-screw-up-your-3d-printing/ last accessed on 23.10.2018.

Kariz M, 2018, Effect of humidity on 3D-printed specimens from wood-pla filaments, Wood Res., 63, 917

10.1002/ceat.201700294

10.1038/nmeth.2019

10.1007/s00468-017-1585-8

10.1086/680231

10.1002/adma.200700584

10.1039/c0sm00092b

10.1038/ncomms8429

10.1002/adma.201502133

10.1039/C8TC02834F

10.1038/nchem.1859

10.1111/j.1558-5646.1974.tb00741.x

10.1039/C6SM01805J

10.1088/1361-665X/aa9410

10.1002/adma.201703653

10.1093/jxb/erz186

10.1093/icb/icz051