4D flow MRI

Journal of Magnetic Resonance Imaging - Tập 36 Số 5 - Trang 1015-1036 - 2012
Michael Markl1,2, Alex Frydrychowicz3,4, Sebastian Kozerke5, Mike Hope6, Oliver Wieben7,8,3
1Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
2Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
3Department of Radiology, University of Schleswig-Holstein, Campus Lübeck, Germany
4Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
5Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
6University of California, San Francisco, California USA
7Department of Biomechanical Engineering, University of Wisconsin – Madison, Wisconsin, USA
8Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA

Tóm tắt

AbstractTraditionally, magnetic resonance imaging (MRI) of flow using phase contrast (PC) methods is accomplished using methods that resolve single‐directional flow in two spatial dimensions (2D) of an individual slice. More recently, three‐dimensional (3D) spatial encoding combined with three‐directional velocity‐encoded phase contrast MRI (here termed 4D flow MRI) has drawn increased attention. 4D flow MRI offers the ability to measure and to visualize the temporal evolution of complex blood flow patterns within an acquired 3D volume. Various methodological improvements permit the acquisition of 4D flow MRI data encompassing individual vascular structures and entire vascular territories such as the heart, the adjacent aorta, the carotid arteries, abdominal, or peripheral vessels within reasonable scan times. To subsequently analyze the flow data by quantitative means and visualization of complex, three‐directional blood flow patterns, various tools have been proposed. This review intends to introduce currently used 4D flow MRI methods, including Cartesian and radial data acquisition, approaches for accelerated data acquisition, cardiac gating, and respiration control. Based on these developments, an overview is provided over the potential this new imaging technique has in different parts of the body from the head to the peripheral arteries. J. Magn. Reson. Imaging 2012;36:1015–1036. © 2012 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1103/PhysRev.94.630

Hahn EL, 1960, Detection of sea water motion by nuclear precession, J Geophys Res, 65

10.1016/0730-725X(82)90170-9

10.1097/00004728-198408000-00002

10.1097/00004728-198406000-00012

10.1097/00004728-198609000-00001

Pelc NJ, 1991, Phase contrast cine magnetic resonance imaging, Magn Reson Q, 7, 229

10.1081/JCMR-200065639

Firmin DN, 1993, Rapid 7‐dimensional imaging of pulsatile flow, Comput Cardiol IEEE Comput Soc Lond, 14, 353

10.1016/S0022-5223(95)70102-8

10.1002/mrm.1910360521

10.1002/jmri.10272

10.1002/jmri.1880070504

10.1002/mrm.1910400207

10.1002/(SICI)1522-2594(199904)41:4<793::AID-MRM19>3.0.CO;2-2

10.1038/35008075

10.1002/jmri.1097

10.1097/01.rct.0000232918.45158.c9

10.1002/jmri.21082

10.1002/mrm.21778

10.1097/RLI.0b013e3181ae99b5

10.1007/s00246-010-9782-x

10.1002/jmri.22519

10.1016/S1078-5884(98)80244-X

10.1002/jmri.1880050605

10.1002/jmri.21790

10.1002/mrm.22353

10.1002/jmri.1880080418

10.1002/1522-2586(200008)12:2<321::AID-JMRI15>3.0.CO;2-2

10.1115/1.1468866

10.1002/mrm.22907

10.1002/jmri.21475

10.1016/j.mri.2009.05.004

10.1002/mrm.1910090117

10.1002/jmri.1880020517

10.1148/radiology.178.2.1987592

10.1002/jmri.1880050405

10.1002/jmri.20871

10.1002/jmri.1880010404

10.1002/mrm.22202

10.1002/mrm.10634

10.1002/mrm.20730

10.1002/mrm.21764

10.1002/mrm.1910280209

10.1002/(SICI)1522-2594(200004)43:4<503::AID-MRM3>3.0.CO;2-0

Gu T, 2005, PC VIPR: a high‐speed 3D phase‐contrast method for flow quantification and high‐resolution angiography, AJNR Am J Neuroradiol, 26, 743

10.1109/TMI.2005.861706

10.1002/mrm.21763

10.1002/mrm.1910290310

10.1002/mrm.10664

10.1002/mrm.20557

10.1148/radiol.10100443

10.3174/ajnr.A0648

Turk AS, 2007, Physiologic and anatomic assessment of a canine carotid artery stenosis model utilizing phase contrast with vastly undersampled isotropic projection imaging, AJNR Am J Neuroradiol, 28, 111

10.1148/radiol.2453061946

10.1148/radiol.11101175

10.1161/CIRCULATIONAHA.109.931857

10.3174/ajnr.A2240

10.1002/jmri.22712

10.1148/radiology.173.1.2781017

10.2214/ajr.168.5.9129447

10.1148/radiology.198.1.8539406

10.1081/JCMR-200036119

10.1097/00004728-198507010-00039

10.1002/mrm.1910180121

10.1002/mrm.1910330517

10.1148/radiol.2203010132

10.1002/mrm.21697

10.1002/mrm.21156

10.1002/mrm.22090

10.1109/TMI.2006.885337

10.1002/mrm.20656

10.1002/mrm.21623

10.1002/jmri.1880030315

10.1002/mrm.1910390218

10.1002/mrm.10582

10.1016/j.crad.2006.09.003

10.1002/jmri.1880010620

10.1002/jmri.1880020206

10.1097/00004728-200407000-00005

10.1161/01.CIR.88.5.2235

10.1161/CIRCULATIONAHA.107.761304

10.1002/jmri.22280

10.1161/CIRCIMAGING.110.958504

10.1080/10976640600723839

10.1002/mrm.22383

10.1016/j.ejrad.2009.06.009

10.1136/hrt.58.4.316

10.1097/RLI.0b013e3182034fc2

10.1161/CIRCIMAGING.110.957712

10.1002/jmri.22083

10.1016/j.jcmg.2011.02.016

10.1186/1532-429X-10-30

10.1002/jmri.21126

10.1148/radiol.09091437

10.1161/CIRCULATIONAHA.107.760124

10.1007/s10439-009-9854-3

10.1016/j.jtcvs.2003.10.042

10.1016/j.jtcvs.2004.08.056

10.1016/S0140-6736(09)60211-7

10.1186/1749-8090-1-7

10.1016/j.ejcts.2011.01.006

10.1002/jmri.22800

10.1016/j.jcmg.2011.05.004

10.1186/1532-429X-12-4

10.1056/NEJM199412013312202

10.1161/CIRCULATIONAHA.106.671727

10.1161/CIRCULATIONAHA.105.593418

10.1016/S0894-7317(96)90064-4

10.1159/000172630

10.1002/jmri.20018

10.1161/STROKEAHA.109.577775

10.1161/STROKEAHA.108.530030

10.1016/j.ejcts.2010.05.026

10.1148/radiol.2431060477

10.1016/0002-9149(90)90711-9

10.1002/jmri.21935

10.1002/mrm.1910360404

BleyTA JohnsonKM WiebenO et al.Non‐invasive assessment of transstenotic pressure gradients utilizing 3D phase contrast MRA: validation against endovascular pressure measurements in a porcine study. In: Proc 17th Annual Meeting ISMRM Honolulu;2009:425.

10.1161/CIRCIMAGING.108.780247

10.1002/jmri.22581

10.1186/1532-429X-13-7

10.1016/0735-1097(95)00141-L

10.1186/1532-429X-12-9

10.1080/10976640701544530

10.1161/CIRCHEARTFAILURE.109.911867

10.1148/radiol.2492080146

10.1186/1471-2342-11-10

10.1007/s00330-011-2108-4

10.1111/j.1478-3231.2006.01273.x

10.1148/radiology.187.1.8451423

10.2214/ajr.160.5.8470589

10.1097/00004728-199009000-00020

10.1007/BF00200392

10.2214/ajr.164.4.7726039

10.1007/s005350050381

Nakano S, 1999, Pharmacologically stimulated portal flow measurement by magnetic resonance imaging for assessment of liver function, Radiat Med, 17, 21

10.1002/jmri.22248

10.1148/radiol.11110127

10.1002/mrm.1910330119

NettEJ FrydrychowiczA JohnsonKM SchraubenE FrancoisCJ WiebenO.Accelerated dual Venc phase contrast VIPR in healthy volunteers. In: Proc 19th Annual Meeting ISMRM Montreal;2011:1222.

10.1016/0002-9343(94)90109-0

10.1148/radiol.2203001444

10.1093/ndt/gfn593

10.1148/radiology.203.1.9122415

10.1148/radiology.205.1.9314974

10.1002/mrm.21774

10.1161/STROKEAHA.107.510644

10.1001/jama.282.21.2035

10.1161/CIRCULATIONAHA.105.590018

10.1002/mrm.21109

Wetzel S, 2007, In vivo assessment and visualization of intracranial arterial hemodynamics with flow‐sensitized 4D MR imaging at 3T, AJNR Am J Neuroradiol, 28, 433

10.1002/jmri.20828

10.1007/s00234-008-0367-9

10.1007/s10439-010-0065-8

10.1016/j.mri.2009.05.042

10.1002/mrm.21861

10.1007/s00234-009-0635-3

10.1161/STROKEAHA.108.521617

10.1034/j.1600-0455.2000.041002139.x

10.2214/ajr.169.3.9275891

10.1148/radiology.190.2.8284382

10.1002/jmri.1880020309

10.1002/jmri.1880010512

10.1002/mrm.1910340508

10.1002/jmri.20514

10.2214/ajr.167.1.8659362

10.1002/jmri.20900

10.1148/radiol.2453071331

10.1002/mrm.10611

10.1002/mrm.21391

10.1002/mrm.22199