4D-MRI driven MR-guided online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-Linac: Implementation and initial clinical experience
Tài liệu tham khảo
Reyngold, 2019, Ablative radiation therapy for locally advanced pancreatic cancer: techniques and results, Radiat Oncol, 14, 95, 10.1186/s13014-019-1309-x
Lagendijk, 2014, The magnetic resonance imaging-Linac system, Semin Radiat Oncol, 24, 207, 10.1016/j.semradonc.2014.02.009
Kooreman, 2019, Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator, Radiother Oncol, 133, 156, 10.1016/j.radonc.2019.01.011
Winkel, 2019, Adaptive radiotherapy: The Elekta Unity MR-linac concept, Clin Transl Radiat Oncol, 1
Stemkens, 2018, Nuts and bolts of 4D-MRI for radiotherapy, Phys Med Biol, 63, 10.1088/1361-6560/aae56d
Wolthaus, 2008, Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registrationa, Med Phys, 35, 3998, 10.1118/1.2966347
Paulson, 2015, Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning, Med Phys, 42, 28, 10.1118/1.4896096
Feng, 2015, XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing, Magn Reson Med, 1
Mickevicius, 2017, Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy, Phys Med Biol, 62, 2910, 10.1088/1361-6560/aa54f2
Hissoiny, 2011, GPUMCD: a new GPU-oriented Monte Carlo dose calculation platform, Med Phys, 38, 754, 10.1118/1.3539725
Hissoiny, 2011, Fast dose calculation in magnetic fields with <tt>GPUMCD</tt>, Phys Med Biol, 56, 5119, 10.1088/0031-9155/56/16/003
Chen, 2019, Measurement validation of treatment planning for a MR-Linac, J Appl Clin Med Phys, 28, 10.1002/acm2.12651
Boesiger, 2001, Advances in sensitivity encoding with arbitrary k-space trajectories, Magn Reson Med, 46, 638, 10.1002/mrm.1241
Ahunbay, 2008, An on-line replanning scheme for interfractional variations, Med Phys, 35, 3607, 10.1118/1.2952443
Ahunbay, 2016, An online replanning method using warm start optimization and aperture morphing for flattening-filter-free beams, Med Phys, 43, 4575, 10.1118/1.4955439
Zhang, 2018, Technical Note: Acceleration of online adaptive replanning with automation and parallel operations, Med Phys, 45, 4370, 10.1002/mp.13106
Tijssen, 2019, MRI commissioning of 1.5T MR-linac systems – a multi-institutional study, Radiother Oncol, 132, 114, 10.1016/j.radonc.2018.12.011
Meeus, 2017, Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue, J Magn Reson Imaging, 45, 1325, 10.1002/jmri.25411
Barbieri, 2016, Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs, Magn Reson Med, 75, 2175, 10.1002/mrm.25765
Chen, 2016, Technical Note: Development and performance of a software tool for quality assurance of online replanning with a conventional Linac or MR-Linac, Med Phys, 43, 1713, 10.1118/1.4943795
Wolthaus, 2008, Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients, Int J Radiat Oncol Biol Phys, 70, 1229, 10.1016/j.ijrobp.2007.11.042
Trofimov, 2008, Tumor trailing strategy for intensity-modulated radiation therapy of moving targets, Med Phys, 35, 1718, 10.1118/1.2900108
Keall, 2001, Motion adaptive X-ray therapy: a feasibility study, Phys Med Biol, 46, 1, 10.1088/0031-9155/46/1/301
Kontaxis, 2017, Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac, Phys Med Biol, 62, 7233, 10.1088/1361-6560/aa82ae
Hammernik, 2018, Learning a variational network for reconstruction of accelerated MRI data, Magn Reson Med, 79, 3055, 10.1002/mrm.26977
Qin C, Schlemper J, Caballero J, Price A, Hajnal JV, Rueckert D, Convolutional recurrent neural networks for dynamic MR image reconstruction, 2017, 1–9.