Nội soi phế quản định vị bằng điện từ 4D trong việc lấy mẫu các tổn thương phổi: Trải nghiệm thực tế lần đầu tiên ở Châu Âu
Tóm tắt
Việc sử dụng nội soi phế quản định vị bằng điện từ (ENB) để chẩn đoán các tổn thương ngoại vi phổi vẫn đang được tranh luận do hiệu suất chẩn đoán biến thiên; một hệ thống ENB 4D mới, thu thập các hình chụp cắt lớp vi tính (CT) trong quá trình hít vào và thở ra, khắc phục được các chuyển động hô hấp và sử dụng các dụng cụ lấy mẫu đã được theo dõi, đạt được tỷ lệ chẩn đoán cao hơn. Chúng tôi đặt mục tiêu đánh giá hiệu suất chẩn đoán và độ chính xác của hệ thống ENB 4D trong việc lấy mẫu các tổn thương phổi và mô tả các yếu tố ảnh hưởng của nó.
Chúng tôi thực hiện một nghiên cứu quan sát hồi cứu kéo dài ba năm bao gồm tất cả bệnh nhân có tổn thương phổi đã trải qua ENB 4D với mục đích chẩn đoán; tất cả các yếu tố có thể ảnh hưởng đến chẩn đoán đều được ghi lại.
Có 103 thủ thuật ENB được bao gồm; hiệu suất chẩn đoán và độ chính xác lần lượt là 55.3% và 66.3%. Chúng tôi báo cáo tỷ lệ thành công trong việc điều hướng là 80.6% và chẩn đoán bằng ENB đạt được trong 68.3% trường hợp; độ nhạy đối với ung thư là 61.8%. Đa số các tổn thương đều có dấu hiệu phế quản trên CT, nhưng chỉ kích thước của các tổn thương ảnh hưởng đến chẩn đoán ENB (
Hiệu suất chẩn đoán của hệ thống ENB 4D thấp hơn so với các hệ thống điều hướng trước đây được sử dụng trong các nghiên cứu. Nhiều yếu tố vẫn ảnh hưởng đến khả năng tiếp cận tổn thương và do đó ảnh hưởng đến hiệu suất chẩn đoán. Việc lựa chọn bệnh nhân, cũng như cách tiếp cận đa mô hình đối với tổn thương, được khuyến cáo để đạt được hiệu suất chẩn đoán và độ chính xác cao hơn, với tỷ lệ biến chứng thấp.
Từ khóa
Tài liệu tham khảo
de Koning HJ, Meza R, Plevritis SK, ten Haaf K, Munshi VN, Jeon J, Erdogan SA, Kong CY, Han SS, van Rosmalen J, Choi SE, Pinsky PF, Berrington de Gonzalez A, Berg CD, Black WC, Tammemägi MC, Hazelton WD, Feuer EJ, McMahon PM (2014) Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force. Ann Intern Med 160:311–320
Patrucco F, Gavelli F, Daverio M, Antonini C, Boldorini R, Casadio C, Balbo PE (2018) Electromagnetic navigation bronchoscopy: Where are we now? Five years of a single-center experience. Lung 196:721–727
Ost DE, Ernst A, Lei X, Kovitz KL, Benzaquen S, Diaz-Mendoza J, Greenhill S, Toth J, Feller-Kopman D, Puchalski J, Baram D, Karunakara R, Jimenez CA, Filner JJ, Morice RC, Eapen GA, Michaud GC, Estrada-Y-Martin RM, Rafeq S, Grosu HB, Ray C, Gilbert CR, Yarmus LB, Simoff M (2016) AQuIRE bronchoscopy registry. Diagnostic Yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQuIRE registry. Am J Respir Crit Care Med 193:68–77
Gex G, Pralong JA, Combescure C, Seijo L, Rochat T, Soccal PM (2014) Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis. Respiration 87:165–176
McGuire AL, Myers R, Grant K, Lam S, Yee J (2020) The diagnostic accuracy and sensitivity for malignancy of radial-endobronchial ultrasound and electromagnetic navigation bronchoscopy for sampling of peripheral pulmonary lesions: systematic review and meta-analysis. J Bronchology Interv Pulmonol 27:106–121
Folch EE, Labarca G, Ospina-Delgado D, Kheir F, Majid A, Khandhar SJ, Mehta HJ, Jantz MA, Fernandez-Bussy S (2020) Sensitivity and safety of electromagnetic navigation bronchoscopy for lung cancer diagnosis: systematic review and meta-analysis. Chest 158:1753–1769
Bertoletti L, Robert A, Cottier M, Chambonniere ML, Vergnon J-M (2009) Accuracy and feasibility of electromagnetic navigated bronchoscopy under nitrous oxide sedation for pulmonary peripheral opacities: an outpatient study. Respiration 78:293–300
Bowling MR, Kohan MW, Walker P, Efird J, Ben OS (2015) The effect of general anesthesia versus intravenous sedation on diagnostic yield and success in electromagnetic navigation bronchoscopy. J Bronchology Interv Pulmonol 22:5–13
Jensen KW, Hsia DW, Seijo LM, Feller-Kopman DJ, Lamb C, Berkowitz D, Curran-Everett D, Musani AI (2012) Multicenter experience with electromagnetic navigation bronchoscopy for the diagnosis of pulmonary nodules. J Bronchology Interv Pulmonol 19:195–199
Mahajan AK, Patel S, Hogarth DK, Wightman R (2011) Electromagnetic navigational bronchoscopy: an effective and safe approach to diagnose peripheral lung lesions unreachable by conventional bronchoscopy in high-risk patients. J Bronchology Interv Pulmonol 18:133–137
Balbo PE, Bodini BD, Patrucco F, Della Corte F, Zanaboni S, Bagnati P, Andorno S, Magnani C (2013) Electromagnetic navigation bronchoscopy and rapid on site evaluation added to fluoroscopy-guided assisted bronchoscopy and rapid on site evaluation: improved yield in pulmonary nodules. Minerva Chir 68:579–585
Eberhardt R, Anantham D, Herth F, Feller-Kopman D, Ernst A (2007) Electromagnetic navigation diagnostic bronchoscopy in peripheral lung lesions. Chest 131:1800–1805
Seijo LM, de Torres JP, Lozano MD, Bastarrika G, Alcaide AB, Lacunza MM, Zulueta JJ (2010) Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a Bronchus sign on CT imaging: results from a prospective study. Chest 138:1316–1321
Pritchett MA, Bhadra K, Calcutt M, Folch E (2020) Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. J Thorac Dis 12:1595–1611
Aboudara M, Roller L, Rickman O, Lentz RJ, Pannu J, Chen H, Maldonado F (2020) Improved diagnostic yield for lung nodules with digital tomosynthesis-corrected navigational bronchoscopy: Initial experience with a novel adjunct. Respirology 25:206–213
Lamprecht B, Porsch P, Wegleitner B, Strasser G, Kaiser B, Studnicka M (2012) Electromagnetic navigation bronchoscopy (ENB): Increasing diagnostic yield. Respir Med 106:710–715
Karnak D, Ciledağ A, Ceyhan K, Atasoy C, Akyar S, Kayacan O (2013) Rapid on-site evaluation and low registration error enhance the success of electromagnetic navigation bronchoscopy. Ann Thorac Med 8:28–32
Jiang S, Xie F, Mao X, Ma H, Sun J (2020) The value of navigation bronchoscopy in the diagnosis of peripheral pulmonary lesions: A meta-analysis. Thorac Cancer 11:1191–1201
Raval AA, Amir L (2016) Community hospital experience using electromagnetic navigation bronchoscopy system integrating tidal volume computed tomography mapping. Lung Cancer Manag 5:9–19
Lee KA, Raval AA, Amir L (2014) Cost–effectiveness of endobronchial percutaneous biopsy compared with transthoracic biopsy for diagnosis of peripheral lung lesions. Lung Cancer Manag 3:135–148
Furukawa BS, Pastis NJ, Tanner NT, Chen A, Silvestri GA (2018) Comparing pulmonary nodule location during electromagnetic bronchoscopy with predicted location on the basis of two virtual airway maps at different phases of respiration. Chest 153:181–186
Yarmus LB, Arias S, Feller-Kopman D, Semaan R, Wang KP, Frimpong B, Oakjones Burgess K, Thompson R, Chen A, Ortiz R, Lee HJ (2016) Electromagnetic navigation transthoracic needle aspiration for the diagnosis of pulmonary nodules: a safety and feasibility pilot study. J Thorac Dis 8:186–194
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, STROBE Initiative (2007) The Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457
Ali EAA, Takizawa H, Kawakita N, Sawada T, Tsuboi M, Toba H, Takashima M, Matsumoto D, Yoshida M, Kawakami Y, Kondo K, Khairy El-Badrawy M, Tangoku A (2019) Transbronchial biopsy using an ultrathin bronchoscope guided by cone-beam computed tomography and virtual bronchoscopic navigation in the diagnosis of pulmonary nodules. Respiration 98:321–328
Gildea TR, Folch EE, Khandhar SJ, Pritchett MA, LeMense GP, Linden PA, Arenberg DA, Rickman OB, Mahajan AK, Singh J, Cicenia J, Mehta AC, Lin H, Mattingley JS, NAVIGATE Study Investigators (2020) The impact of biopsy tool choice and rapid on-site evaluation on diagnostic accuracy for malignant lesions in the prospective: multicenter NAVIGATE study. J Bronchology Interv Pulmonol. https://doi.org/10.1097/LBR.0000000000000740
Wiener RS, Schwartz LM, Woloshin S, Welch HG (2011) Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: an analysis of discharge records. Ann Intern Med 155:137–144
Mallow C, Lee H, Oberg C, Thiboutot J, Akulian J, Burks AC, Luna B, Benzaquen S, Batra H, Cardenas-Garcia J, Toth J, Heidecker J, Belanger A, McClune J, Osman U, Lakshminarayanan V, Pastis N, Silvestri G, Chen A, Yarmus L (2019) Safety and diagnostic performance of pulmonologists performing electromagnetic guided percutaneous lung biopsy (SPiNperc). Respirology 24:453–458
Folch EE, Pritchett MA, Nead MA, Bowling MR, Murgu SD, Krimsky WS, Murillo BA, LeMense GP, Minnich DJ, Bansal S, Ellis BQ, Mahajan AK, Gildea TR, Bechara RI, Sztejman E, Flandes J, Rickman OB, Benzaquen S, Hogarth DK, Linden PA, Wahidi MM, Mattingley JS, Hood KL, Lin H, Wolvers JJ, Khandhar SJ, NAVIGATE Study Investigators (2019) Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, Multicenter NAVIGATE Study. J Thorac Oncol 14(3):445–458