3D tritium transport analysis for WCCB blanket based on COMSOL

Fusion Engineering and Design - Tập 151 - Trang 111405 - 2020
Xueli Zhao1,2, Muyi Ni3, Baojie Nie3, Bing Zhang1,2, Lei Chen1, Kai Huang1, Songlin Liu1
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
2University of Science and Technology of China, Hefei, Anhui 230027, China
3Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, China

Tài liệu tham khảo

Franza, 2013, Tritium transport analysis in HCPB DEMO blanket with the FUS-TPC code, Fusion Eng. Des., 88, 2444, 10.1016/j.fusengdes.2013.05.045 Candido, 2016, Tritium transport in HCLL and WCLL DEMO blankets, Fusion Eng. Des., 109–111, 248, 10.1016/j.fusengdes.2016.03.017 Elisabetta, 2017, Tritium modeling in HCPB breeder blanket at a system level, Fusion Eng. Des. Meyder, 2006, 1 Ying, 2015, Tritium transport evolutions in HCCR TBM under ITER inductive operations, Fusion Sci. Technol., 68, 346, 10.13182/FST14-908 Ying, 2016, Advancement in tritium transport simulations for solid breeding blanket system, Fusion Eng. Des., 109–111, 1511, 10.1016/j.fusengdes.2015.11.040 Testoni, 2019 Candido, 2019 Liu, 2017, Conceptual design of the water cooled ceramic breeder blanket for CFETR based on pressurized water cooled reactor technology, Fusion Eng. Des., 124 Zhao, 2019, Tritium transport analysis for WCCB blanket of CFETR based on COMSOL, Fusion Eng. Des., 1, 10.1016/j.fusengdes.2019.01.044 Kobayashi, 2013, Migration of hydrogen isotopes in lithium metatitanate, J. Nucl. Mater., 439, 159, 10.1016/j.jnucmat.2013.04.020 Franza, 2013, Tritium transport analysis in HCPB DEMO blanket with the FUS-TPC code, Fusion Eng. Des., 88, 2444, 10.1016/j.fusengdes.2013.05.045 Edao, 2016, Evaluation of tritium release behavior from Li2TiO3 during DT neutron irradiation by use of an improved tritium collection method, Fusion Eng. Des., 10.1016/j.fusengdes.2016.06.013 Zhou, 2019, Release kinetics of tritium generation in neutron irradiated biphasic Li2TiO3-Li4SiO4 ceramic breeder, J. Nucl. Phys. Mater. Sci. Radiat. Appl., 522, 286 Antidormi, 1995, A review of tritium release modelling from Lithium ceramics, Fusion Technol., 28, 519, 10.13182/FST95-A30455 Chen, 2017 Mota, 2001, Binary spherical particle mixed beds: porosity and permeability relationship measurement, Trans. Filt. Soc., 1, 101 Tavassoli, 2007 Hirose, 2014, Physical properties of F82H for fusion blanket design, Fusion Eng. Des., 89, 1595, 10.1016/j.fusengdes.2013.12.005 Jiang, 2016, Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR, Fusion Eng. Des., 112, 81, 10.1016/j.fusengdes.2016.07.027 Serra, 1997, Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman, J. Nucl. Mater., 245, 108, 10.1016/S0022-3115(97)00021-4 Esteban, 2000, The surface rate constants of deuterium in the reduced activating martensitic steel OPTIFER-IVb, J. Nucl. Phys. Mater. Sci. Radiat. Appl., 282, 89 Nakamura, 2006, Case study on tritium inventory in the fusion DEMO plant at JAERI, Fusion Eng. Des., 81, 1339, 10.1016/j.fusengdes.2005.10.009 Ogorodnikova, 1999, Calculations of the tritium re-emission rate in the DEMO first wall, J. Nucl. Mater., 270, 368, 10.1016/S0022-3115(99)00013-6 2010 Someya, 2012 Candido, 2018, Tritium transport model at the minimal functional unit level for HCLL and WCLL breeding blankets of DEMO, Fusion Eng. Des., 10.1016/j.fusengdes.2018.05.002