3D tritium transport analysis for WCCB blanket based on COMSOL
Tài liệu tham khảo
Franza, 2013, Tritium transport analysis in HCPB DEMO blanket with the FUS-TPC code, Fusion Eng. Des., 88, 2444, 10.1016/j.fusengdes.2013.05.045
Candido, 2016, Tritium transport in HCLL and WCLL DEMO blankets, Fusion Eng. Des., 109–111, 248, 10.1016/j.fusengdes.2016.03.017
Elisabetta, 2017, Tritium modeling in HCPB breeder blanket at a system level, Fusion Eng. Des.
Meyder, 2006, 1
Ying, 2015, Tritium transport evolutions in HCCR TBM under ITER inductive operations, Fusion Sci. Technol., 68, 346, 10.13182/FST14-908
Ying, 2016, Advancement in tritium transport simulations for solid breeding blanket system, Fusion Eng. Des., 109–111, 1511, 10.1016/j.fusengdes.2015.11.040
Testoni, 2019
Candido, 2019
Liu, 2017, Conceptual design of the water cooled ceramic breeder blanket for CFETR based on pressurized water cooled reactor technology, Fusion Eng. Des., 124
Zhao, 2019, Tritium transport analysis for WCCB blanket of CFETR based on COMSOL, Fusion Eng. Des., 1, 10.1016/j.fusengdes.2019.01.044
Kobayashi, 2013, Migration of hydrogen isotopes in lithium metatitanate, J. Nucl. Mater., 439, 159, 10.1016/j.jnucmat.2013.04.020
Franza, 2013, Tritium transport analysis in HCPB DEMO blanket with the FUS-TPC code, Fusion Eng. Des., 88, 2444, 10.1016/j.fusengdes.2013.05.045
Edao, 2016, Evaluation of tritium release behavior from Li2TiO3 during DT neutron irradiation by use of an improved tritium collection method, Fusion Eng. Des., 10.1016/j.fusengdes.2016.06.013
Zhou, 2019, Release kinetics of tritium generation in neutron irradiated biphasic Li2TiO3-Li4SiO4 ceramic breeder, J. Nucl. Phys. Mater. Sci. Radiat. Appl., 522, 286
Antidormi, 1995, A review of tritium release modelling from Lithium ceramics, Fusion Technol., 28, 519, 10.13182/FST95-A30455
Chen, 2017
Mota, 2001, Binary spherical particle mixed beds: porosity and permeability relationship measurement, Trans. Filt. Soc., 1, 101
Tavassoli, 2007
Hirose, 2014, Physical properties of F82H for fusion blanket design, Fusion Eng. Des., 89, 1595, 10.1016/j.fusengdes.2013.12.005
Jiang, 2016, Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR, Fusion Eng. Des., 112, 81, 10.1016/j.fusengdes.2016.07.027
Serra, 1997, Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman, J. Nucl. Mater., 245, 108, 10.1016/S0022-3115(97)00021-4
Esteban, 2000, The surface rate constants of deuterium in the reduced activating martensitic steel OPTIFER-IVb, J. Nucl. Phys. Mater. Sci. Radiat. Appl., 282, 89
Nakamura, 2006, Case study on tritium inventory in the fusion DEMO plant at JAERI, Fusion Eng. Des., 81, 1339, 10.1016/j.fusengdes.2005.10.009
Ogorodnikova, 1999, Calculations of the tritium re-emission rate in the DEMO first wall, J. Nucl. Mater., 270, 368, 10.1016/S0022-3115(99)00013-6
2010
Someya, 2012
Candido, 2018, Tritium transport model at the minimal functional unit level for HCLL and WCLL breeding blankets of DEMO, Fusion Eng. Des., 10.1016/j.fusengdes.2018.05.002