3D printing of large, complex metallic glass structures

Materials and Design - Tập 117 - Trang 213-222 - 2017
Yiyu Shen1, Yingqi Li1, Chen Chen1, Hai-Lung Tsai1
1Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States

Tài liệu tham khảo

Johnson, 1996, Bulk metallic glasses − a new engineering material, Curr. Opinion Solid State Mater. Sci., 1, 383, 10.1016/S1359-0286(96)80029-5 Park, 2005, Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: a review, Met. Mater. Int., 11, 19, 10.1007/BF03027480 Johnson, 2002, Bulk amorphous metal − an emerging engineering material, J. Miner. Met. Mater. Soc., 54, 40, 10.1007/BF02822619 Löffler, 2003, Bulk metallic glasses, Intermetallics, 11, 529, 10.1016/S0966-9795(03)00046-3 Telford, 2004, Mater. Today, 7, 36, 10.1016/S1369-7021(04)00124-5 Takeuchi, 2001, Evaluation of glass-forming ability for metallic glasses from time-reduced temperature-transformation diagram, Mater. Trans., 42, 2374, 10.2320/matertrans.42.2374 Wang, 2004, Bulk metallic glasses, Mater. Sci. Eng. R, 44, 45 Laws, 2008, Large-scale production of Ca65Mg15Zn20 bulk metallic glass samples by low-pressure die-casting, Mater. Sci. Eng. A, 475, 348, 10.1016/j.msea.2007.04.059 Brenner, 1950, Electrodeposition of alloys of phosphorus with nickel or cobalt, J. Res. Natl. Bur. Stand., 44, 109, 10.6028/jres.044.009 Turnbull, 1958, Concerning reconstructive transformation and formation of glass, J. Chem. Phys., 29, 1049, 10.1063/1.1744654 Cohen, 1959, Molecular transport in liquids and glasses, J. Chem. Phys., 31, 1164, 10.1063/1.1730566 Uhlmann, 1977, Glass formation, J. Non-Cryst. Solids, 23, 42, 10.1016/0022-3093(77)90090-4 Klement, 1960, Non-crystalline structure in solidified gold–silicon alloys, Nature, 187, 869, 10.1038/187869b0 Johnson, 1999, Bulk glass-forming metallic alloys: Science and technology, MRS Bull., 24, 42, 10.1557/S0883769400053252 Inoue, 2000, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48, 279, 10.1016/S1359-6454(99)00300-6 Inoue, 2008, Development and applications of late transition metal bulk metallic glasses, 1 Peker, 1993, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett., 63, 2342, 10.1063/1.110520 Hays, 2001, Vitrification and determination of the crystallization time scales of the bulk metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3, Appl. Phys. Lett., 79, 1605, 10.1063/1.1398605 Hays, 2000, Glass forming ability in the Zr-Nb-Ni-Cu-Al bulk metallic glasses, J. Metastable Nanocryst. Mater., 8, 103 Hays, 1999, Undercooling of bulk metallic glasses processed by electrostatic levitation, J. Non-Cryst. Solids, 250, 596, 10.1016/S0022-3093(99)00139-8 Lin, 1995, Formation of Ti-Zr-Cu-Ni bulk metallic glasses, Appl. Phys. Lett., 78, 6514 Schroers, 2010, Processing of bulk metallic glass, Adv. Mater., 22, 1566, 10.1002/adma.200902776 Jung, 2015, Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study, Mater. Des., 86, 703, 10.1016/j.matdes.2015.07.145 Sun, 2010 Terry, 2013 Wong, 2012, A review of additive manufacturing, ISRN Mech. Eng. Vaezi, 2013, A review on 3D micro-additive manufacturing technologies, Int. J. Adv. Manuf. Technol., 67, 1721, 10.1007/s00170-012-4605-2 Miranda, 2008, Rapid prototyping with high power fiber lasers, Mater. Des., 29, 2072, 10.1016/j.matdes.2008.03.030 ASTM F2792-12a, 2012 He, 2015, Progress on photosensitive resins for 3D printing, J. Funct. Polym., 28, 102 He, 2015, 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity, Small, 11, 5889, 10.1002/smll.201502153 Tapia, 2014, A review on process monitoring and control in metal-based additive manufacturing, J. Manuf. Sci. Eng., 136, 060801, 10.1115/1.4028540 Frazier, 2014, Metal additive manufacturing: a review, J. Mater. Eng. Perform., 23, 1917, 10.1007/s11665-014-0958-z Kruth, 2005, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyp. J., 11, 26, 10.1108/13552540510573365 Gong, 2014, Review on powder-based electron beam additive manufacturing technology, Manuf. Rev., 1, 507 Kumar, 2010, Composites by rapid prototyping technology, Mater. Des., 31, 850, 10.1016/j.matdes.2009.07.045 Gu, 2012, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev., 57, 133, 10.1179/1743280411Y.0000000014 P. Skoglund, A. Langlet, Method of Producing Objects Containing Nano Metal or Composite Metal, U.S. Patent No. 8333922 B2. Zhang, 2015, Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming, Intermetallics, 66, 22, 10.1016/j.intermet.2015.06.007 Pauly, 2013, Processing metallic glasses by selective laser melting, Mater. Today, 16, 37, 10.1016/j.mattod.2013.01.018 Li, 2006, Laser welding of Zr45Cu48Al7 bulk glassy alloy, J. Alloys Compd., 413, 118, 10.1016/j.jallcom.2005.07.005 Kim, 2007, Pulsed Nd: YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass, Mater. Sci. Eng. A, 449, 872, 10.1016/j.msea.2006.02.323 Wang, 2012, Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass, Mater. Sci. Eng. A, 541, 33, 10.1016/j.msea.2012.01.114 Chen, 2016, A foil-based additive manufacturing technology for metal parts, ASME J. Manuf. Sci. Eng., 139, 024501-1 Kawahito, 2008, High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30, Mater. Sci. Eng. B, 148, 105, 10.1016/j.mseb.2007.09.062 Wang, 2010, Combination of a Nd: YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding, Mater. Sci. Eng. A, 528, 338, 10.1016/j.msea.2010.09.014 Wang, 2010, Microstructure evolution in Nd: YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy, J. Alloys Compd., 495, 224, 10.1016/j.jallcom.2010.01.132 Wang, 2012, Microstructure evolution of the laser spot welded Ni-free Zr-based bulk metallic glass composites, Intermetallics, 29, 92, 10.1016/j.intermet.2012.05.013 Kim, 2006, Phase evolution in Cu54Ni6Zr22Ti18 bulk metallic glass Nd: YAG laser weld, Mater. Sci. Eng. A, 434, 194 Sarsfield, 2006, Powder X-ray diffraction detection of crystalline phase in amorphous pharmaceuticals, International Centre for Diffraction Data, 322 Haque, 2013 Huang, 2014, The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass, J. Alloys Compd., 608, 148, 10.1016/j.jallcom.2014.04.112 Raghavan, 2008, Influence of cooling rate on the enthalpy relaxation and fragility of a metallic glass, Metall. Mater. Trans. A, 39, 1573, 10.1007/s11661-007-9262-y Rombouts, 2005, Photopyroelectric measurement of thermal conductivity of metallic powders, J. Appl. Phys., 97, 024905, 10.1063/1.1832740 Wang, 2001, Characteristics of the glass transition and supercooled liquid state of the Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass, Phys. Rev. B, 63, 052204, 10.1103/PhysRevB.63.052204 Yamasaki, 2005, Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass, Scr. Mater., 53, 63, 10.1016/j.scriptamat.2005.03.021 Jiang, 2008, Zr–(Cu, Ag)–Al bulk metallic glasses, Acta Mater., 56, 1785, 10.1016/j.actamat.2007.12.030 Zhang, 2004, Effect of pressure on crystallization process of Zr55Al10Ni5Cu30 bulk metallic glass, Mater. Lett., 58, 1379, 10.1016/j.matlet.2003.09.031