3D printing in dentistry
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andonović V, Vrtanoski G . Growing rapid prototyping as a technology in dental medicine. Mech Eng Sci J 2010; 29: 31–39.
Liu Q, Leu M C, Schmitt S M . Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 2006; 29: 317–335.
Strub J R, Rekow E D, Witkowski S . Computer-aided design and fabrication of dental restorations: current systems and future posibilities. J Am Dent Assoc 2006; 137: 1289–1296.
Miyazaki T, Hotta Y . CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J 2011; 56: 97–106.
Azari A, Nikzad S . The evolution of rapid prototyping in dentistry: A review. Rapid Prototyping J 2009; 15: 216–222.
Bammani S S, Birajdar P R, Metan S S . Application of CAD and SLA Method in Dental Prosthesis. AMAE Int J Man Mat Sci 2013; 3: 5.
Venkatesh K V, Nandini V V . Direct metal laser sintering: a digitised metal casting technology. J Indian Prosthodont Soc 2013; 13: 389–392.
Witkowski S, Komine F, Gerds T . Marginal accuracy of titanium copings fabricated by casting and CAD/CAM techniques. J Prosthet Dent 2006; 96: 47–52.
Petzold R, Zeilhofer H F, Kalender W A . Rapid prototyping technology in medicine-basics and applications. Comput Med Imaging Graph 1999; 23: 277–284.
Sykes L M, Parrott A M, Owen C P, Snaddon D R . Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 2004; 17: 454–459.
Kurenov S N, Ionita C, Sammons D, Demmy T L . Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J Thorac Cardiovasc Surg 2015; 149: 973–979.
Adibi S, Zhang W, Servos T, O'Neill P . Cone beam computed tomography for general dentists. Open Access Scientific Reports 2012; 1: 519.
Scarfe W C, Farman A G, Sukovic P . Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 2006; 72: 75–80.
Chan H L, Misch K, Wang H L . Dental imaging in implant treatment planning. Implant Dent. 2010; 19: 288–298.
Worthington P, Rubenstein J, Hatcher DC . The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc 2010; 141: 19S–24S.
Kiarudi A H, Eghbal M J, Safi Y, Aghdasi M M, Fazlyab M . The applications of cone-beam computed tomography in endodontics: a review of literature. Iran Endod J 2015; 10: 16–25.
Patel S . New dimensions in endodontic imaging: part 2. Cone beam computed tomography. Int Endod J 2009; 42: 463–475.
Hatcher D C, Dial C, Mayorga C . Cone beam CT for pre-surgical assessment of implant sites. J Calif Dent Assoc 2003; 31: 825–833.
Sinn D P, Cillo J E Jr, Miles B A . Stereolithography for craniofacial surgery. J Craniofac.Surg 2006; 17: 869–875.
Van Assche N, van Steenberghe D, Guerrero M E et al. Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. Clin Periodontol 2007; 34: 816–821.
Dawood A, Tanner S, Hutchison I . Computer guided surgery for implant placement and dental rehabilitation in a patient undergoing sub-total mandibulectomy and microvascular free flap reconstruction. J Oral Implantol 2013; 39: 497–502.
Sanna A, Molly L, van Steenberghe D . Immediately loaded CAD-CAM manufactured fixed complete dentures using flapless implant placement procedures: a cohort study of consecutive patients. J Prosthet Dent 2007; 97: 331–339.
Tardieu P B, Vrielinck L, Escolano E, Henne M, Tardieu A L . Computer-assisted implant placement: scan template, simplant, surgiguide, and SAFE system. Int J Periodontics Restorative Dent. 2007; 27: 141–149.
Salmi M, Paloheimo K S, Tuomi J, Wolff J, Mäkitie A . Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg 2013; 41: 603–609.
Liang X, Lambrichts I, Sun Y et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part II: on 3D model accuracy. Eur J Radiol 2010; 75: 270–274.
Ersoy A E, Turkyılmaz I, Ozan O, McGlumphy E A . Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants. J Periodontol 2008; 79: 1339–1345.
Fortin T, Champleboux G, Lormee J, Coudert J . Precise dental implant placement using surgical guides in conjuction with medical imaging techniques. J Oral Implantol 2000; 264: 300–303.
Krishnan S P, Dawood A, Richards R, Henckel J, Hart A J . A review of rapid prototyped surgical guides for patient-specific total knee replacement. J Bone Joint Surg Br 2012 Nov; 94: 1457–1461.
Flügge T V, Nelson K, Schmelzeisen R, Metzger M C . Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. J Oral Maxillofac Surg 2013; 71: 1340–1346.
Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z . Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 2014; 112: 1088–1095.
Collier J, Richards R, Sauret-Jackson V, Dawood A, Grant W, Kirkpatrick N . Use of custom surgical stents for facial bone contouring-a new technique. Br J Oral Max Surg 2011; 49: 46.
Huotilainen E, Jaanimets R, Valášek J, Marcián P, Salmi M, Tuomi J, Mäkitie A, Wolff J . Sensitivity analysis of geometric errors in additive manufacturing medical models. Med Eng Phys 2015; 37: 328–334.
Logozzo S, Zanetti E M, Franceschini G, Makynen A . Recent advances in dental optics – Part I: 3D intraoral scanners for restorative dentistry. Opt Laser Eng 2014; 54: 203–221.
Akyalcin S, Cozad BE, English J D, Colville C D, Laman S . Diagnostic accuracy of impression-free digital models. Am J Orthod Dentofacial Orthop 2013; 144: 916–922.
Lin W S, Chou J C, Metz M J, Harris B T, Morton D . Use of intraoral digital scanning for a CAD/CAM-fabricated milled bar and superstructure framework for an implant-supported, removable complete dental prosthesis. J Prosthet Dent 2015; 113: 509–515.
Papaspyridakos P, Gallucci G O, Chen C J, Hanssen S, Naert I, Vandenberghe B . Digital versus conventional implant impressions for edentulous patients: accuracy outcomes. Clin Oral Implants Res 2015; 10.1111/clr.12567.
Ender A, Mehl A . Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent 2013; 109: 121–128.
Kruth J P, Vandenbroucke B, Van Vaerenbergh J, Naert I, Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM. pp 139–145. Proceedings of 2nd Int. Conf. on Advanced Research in Virtual and Rapid Prototyping, Leiria, 2005.
Kasparova M, Grafova L, Dvorak P et al. Possibility of reconstruction of dental plaster cast from 3D digital study models. Biomed Eng Online 2013: 31; 12: 49.
Ortorp A, Jonson D, Mouhsen A, Vult von Steyern P . The fit of cobalt-chromium three unit fixed dental prostheses fabricated with 4 different techniques: a comparative in vitro study. Dent Mater J 2011; 27: 356–363.
AMazing. EOS-Dental crowns and bridges, dental models and removable partial dentures (RPD) Alter the Dental Industry. Additive Manufacturing. Available online at http://additivemanufacturing.com/2013/03/12/eos-laser-sintering-is-replacing-traditional-processes-in-dental-industry/ (accessed November 2015).
Birnbaum N S, Aaronson H B . Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent 2008; 29: 494, 496, 498–505.
Tuncay O . The Invisalign System. New Malden: Quintessence Publishing Co., Ltd, 2006.
InvisalignEurope. Invisalign - How does it work? Youtube. 2015. Available online at https://www.youtube.com/watch?v=60bJYGDaqx0&feature=youtu.be (accessed November 2015).
Ciuffolo F, Epifania E, Duranti G et al. Rapid prototyping: a new method of preparing trays for indirect bonding. Am J Orthod Dentofacial Orthop 2006; 129: 75–77.
Xiong Y, Qian C, Sun J . Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent Mater J 2012; 31: 815–820.
Esposito M, Ardebili Y, Worthington H V . Interventions for replacing missing teeth: different types of dental implants. Cochrane Database of Syst Rev 2005; 10.1002/14651858.
Charalampakis G, Leonhardt Å, Rabe P, Dahlén G . Clinical and microbiological characteristics of peri-implantitis cases: a retrospective multicentre study. Clin Oral Implants Res 2012; 23: 1045–1054.
Quirynen M, Abarca M, Van Assche N, Nevins M, van Steenberghe D . Impact of supportive periodontal therapy and implant surface roughness on implant outcome in patients with a history of periodontitis. J Clin Periodontol 2007; 34: 805–815.
Camarini E T, Tomeh J K, Dias R R, da Silva E J . Reconstruction of frontal bone using specific implant polyether-ether-ketone. J Craniofac Surg 2011; 22: 2205–2207.
Farré-Guasch E, Wolff J, Helder M N, Schulten E A, Forouzanfar T, Klein-Nulend J . Application of additive manufacturing in oral and maxillofacial surgery. J Oral Maxillofac Surg 2015; 10.1016/j.joms.2015.04.019.
Parthasarathy J . 3D modelling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg 2014; 4: 9–18.
EOS GmbH. Additive manufacturing: possibilities, benefits and functional principle. EOS e-Manufacturing Solutions. Available online at www.eos.info/additive_manufacturing/for_technology_interested (accessed November 2015).
Ibrahim D, Broilo TL, Heitz C et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg 2009; 37: 167–173.
Melchels F, Feijen J, Grijpma D W . A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010; 31: 6121–6130.
Deckard C . Method and apparatus for producing parts by selective sintering. U S. Patent 4863538 A, filed 17 October 1986, published 1989.
Deckard C, Beaman J . Process and control issues in selective laser sintering. ASME Prod Eng Div PED 1988; 33: 191–197.
Kruth J P, Vandenbroucke B, Van Vaerenbergh J, Mercelis P . Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Proceedings of 1st Int. Conf. of Polymers and Moulds Innovations, Gent, 2005.
Ono I, Abe K, Shiotani S, Hirayama Y . Producing a full-scale model from computed tomographic data with the rapid prototyping technique using the binder jet method: a comparison with the laser lithography method using a dry skull. J Craniofac Surg 2000; 11: 527–537.
Silva D N, Gerhardt de Oliveira M, Meurer E, Meurer M I, Lopes da Silva JV, Santa-Bárbara A . Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 2008; 36: 443–449.
Bibb R, Eggbeer D, Williams R . Rapid manufacture of removable partial denture frameworks. Rapid Prototyping J 2006; 12: 95–99.
Ibrahim D et al. Dimensional accuracy of selective laser sintering and three dimensional printing of models for craniomaxillary anatomy reconstruction. J Cranio Maxil Surg 2008; 36: 44.
Tan K H, Chua C K, Leong K F, Naing M W, Cheach C M . Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/hydroxyapatite biocomposite scaffolds using laser sintering. J Eng Med 2005; 219: 183–194.
Takemoto M, Fujibayashi S, Ota E et al. Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area. Eur Spine J 2015; 10.1007s00586-015-3908-z.
Lin W S, Starr T L, Harris B T, Zandinejad A, Morton D . Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters. Int J Oral Maxillofac Implants 2013; 28: 1490–1495.
Tsai M J, Wu C T . Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology. Biomed Eng Online. 2014; 13: 57.
Schepers R H, Raghoebar G M, Vissink A et al. Fully 3-dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction. Head Neck 2013; 35: E109–E114.
Torabi K, Farjood E, Hamedani S . Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent Shiraz Univ Med Sci 2015; 16: 1–9.